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Solution of the Diophantine Equation of the form a* —b’c* =+1
Md. Shameem Reza', M Nazrul Islam?

Abstract: Our main goal in this paper is to find the new results of some exponential Diophantine equations of the form a*—b’ct ==x1. we
use the method of congruence with single modulus to find the new results for some Diophantine equations of this type.

Introduction
In the theory of finite nonabelian simple groups, there are many applications in Alex [2] and [3] of the exponential
Diophantine equations of the following form
a' —b'ct =%l (1)
where a,b, ¢ are positive integers and unknowns x, y, 7 are nonnegative integers.

In Alex [3], author uses the congruence with a single modulus to obtain all the solutions for the following exponential
Diophantine equations:

2" =377 =%1 2)

3F =27 =+1 3)
and

7 =273 ==+1 “)
In Alex [2], author uses the same method to solve the following Diophantine equations:

2" =35 =1 5)

2" =577 ==+1 ©6)

3°-2"5" ==1 @)

5' =273 =41 ®)

5 =277 =41 (©)]
and

7TH=2"5" =41 10)

where the equations (7) & (8) are also solved in Brenner [4].
Acu [1] solves the following Diophantine equations of the form (1) by using the elementary method,

2" =311IF ==+1 (11)
2" =313 =+1 (12)
2" =317 =+1 (13)
2" -3"19° ==1 (14)

Teng [5] uses the same method to prove that the equation

a’=p’p, py AN pt =H
where a is a positive integer with a>1 and p,,p,,p;,AA p, are distinct primes with
g.c.d (a,p,,p,,p;»AA p,)=1,has only finitely many positive integer solutions (x,y,y, YA A y,).

We will use the same method of congruence with a single modulus to solve some new Diophantine equations of the form

(D.

! Assistant Professor, Department of Arts and Sciences, Ahsanullah University of Science & Technology
2 Associate Professor, Department of Mathematics, Jahangirnagar University, Savar, Dhaka, Bangladesh.

3



New Results

Theorem 1. For the prime numbers ¢ € {23, 29,31,37, 41} the Diophantine equation

2" =3¢t =1
has nonnegative integral common solutions: (x, y,z)=(1,0,0) and (2,1,0) but when ¢ =31, (5,0,1) is also a solution
together with the common solutions.

Proof: The theorem is proved in the following cases.

Casel: ¢ =23

For z > 1, we find by using mod 23 that 2" =1(mod 23), which implies x = 0(mod 11). But, if we use mod 89, we also
get 2" =1(mod 89), which is a contradiction and so there is no solution.

Suppose y >3, we find by using mod 27 that 2'* = l(mod 27) and this implies x = O(mod 18). But, if we use mod 19,

we also get 2'® =1(mod 19), which is a contradiction and so there is no solution.

CaseIl: ¢ =29
For z > 1, using mod 29 we find x = O(mod 28). But, if we use mod 5, we obtain a contradiction.

Considering y = 3, using mod 27, we obtain x = O(modIS). But, if we use mod 7, we find a contradiction and so there
is no solution.

Case III: ¢ =31
For z =2, using mod 961, we find x = 0(m0d155 ) . Now if we use mod 311, we obtain a contradiction.

Considering y = 3, using mod 27, we obtain x = O(modIS) . In this case we have a contradiction for mod 7 and so there

1s no solution.
Therefore,

If z=1and y <2, we find the solution (x, y,z) = (5,0,1).

CaseIV: ¢ =37
For z > 1, using mod 37 we find x = O(mod 36). Now, if we use mod 5, we find a contradiction.

Suppose y = 3, using mod 27 we obtain x =0 (modlS) . This yields a contradiction mod 7 and so there is no solution.

CaseV: ¢ =41
For z > 1, using mod 41, we find x = O(mod 20). Now if we use mod 5, we obtain a contradiction.

Considering y = 3, using mod 27, we obtain x = O(modIS). But, if we use mod 7, we find a contradiction and so there
is no solution.

Therefore, we conclude from the above cases that,

If z=0 and y <2, we find the solutions (x, y,z)=(1,0,0) and(2,1,0),

and there is no other solution for ¢ € {23, 29,37,41} when z=1and y<2.

Theorem 2. For the prime numbers ¢ € {23, 29,31,37, 41} the Diophantine equation
2" =3¢ =-1

has nonnegative integral solutions: (x, y,z)=(1,1,0) and(3,2,0).



Proof: We prove the theorem in following cases.

Casel: ¢ =23
Considering z =1, we find by using mod 23 that

2" =2,4,8,16,9,18,13,3,6, 12,1(m0d 23)
and 37237 = 0(mod 23)
but —1=—1(mod 23) = 22(mod 23)
This is a contradiction and yields no solution for z >1.
For y >3, using mod 27, we obtain x = 0(m0d9). But, if we use mod 19, we find a contradiction and so there is no
solution.

CaseIl: ¢ =29
For z > 1, using mod 29, we find x = 0(m0d14). Now, if we use mod 5, we obtain a contradiction.

Suppose y =3, using mod 27, we obtain x = 0(m0d9). But, if we use mod 19, we find a contradiction and so there is
no solution.

Case III: ¢ =31
Considering z =1, we find by using mod 31 that

2* =2,4,8,16, 1(mod 31)
and 3°31° =0(mod 31)
but —1=-1(mod31)=30(mod 31),
This yields a contradiction and so there is no solution for z >1.

For y >3, using mod 27, we obtain x = 0(m0d9). But, if we use mod 19, we find a contradiction and so there is no
solution.

Case IV:c =37
Suppose z =1, using mod 37, we find x = O(modIS) . Now if we use mod 5, we find a contradiction.

For y >3, using mod 27, we obtain x = 0(m0d9). But, if we use mod 19, we find a contradiction and so there is no
solution.

CaseV: ¢ =41
For z > 1, using mod 41, we find x = O(modIO). Now if we use mod 5, we obtain a contradiction.

Assume y 2> 3, using mod 27, we obtain x = 0(m0d9). But, if we use mod 19, we find a contradiction and so there is no
solution.

Therefore, we conclude from the above cases that,
If z=0 and y <2, we find the solutions (x, y,z)=(1,1,0) and(3,2,0).
If z=1 and y <2, there is no other solution.

Theorem 3. For the prime numbers ¢ € {1 1,13,17,19, 23} the Diophantine equation

3" -2"c* =1
has nonnegative integral common solutions: (x, y,z)=(1,1,0) and (2,3,0) but when ¢ =11and 13, (5,,2) and (3,1,1)
are also the solutions, respectively together with the common solutions.



Proof: We prove the theorem in following cases.

Casel: c =11

For z >3, we find by using mod 1331 that 3* =1(mod1331), which implies x = 0(mod 55). But, if we use mod 23,
we also get 3°° =1(mod 23), which is a contradiction.

Suppose y =4, we find by using mod 16 that 3* = 1(m0d16) so that x = O(mod 4). But, if we use mod 5, we also get

3* =1(mod35), which is a contradiction and so there is no solution.
Therefore,
If z=2 and y <3, we find the solutions (x, y,z)=(5,1,2).

CaselIl: ¢ =13
For z =2, using mod 169, we obtain x =0 (mod 39). Further, using mod 313, we obtain a contradiction.

Suppose y = 4, using mod 16, we find x =0 (mod 4). This yields a contradiction for mod 5 and so there is no solution.
Therefore,
If z=1 and y <3, we find the solutions (x, y,z)=(3,1,1).

CaseIIl: ¢ =17
For z > 1, using mod 17, we find x =0 (m0d16). Now, if we use mod 5, we find a contradiction.

Considering y = 4, using mod 16, we obtain x =0 (mod 4). In this case we have a contradiction for mod 5 and so there
is no solution.

CaselV: ¢ =19
For z > 1, using mod 19, we find x =0 (modlS). But, if we use mod 7, we obtain a contradiction.

Suppose y = 4, using mod 16, we find x =0 (mod 4). This yields a contradiction for mod 5 and so there is no solution.

Case V: ¢ =23
For z > 1, using mod 23, we find x =0 (modl 1). Now, if we use mod 3851, we find a contradiction.

Suppose y =4, using mod 16, we obtain x =0 (mod 4). This yields a contradiction for mod 5 and so there is no
solution.

Therefore, we conclude from the above cases that,
If z=0 and y <3, we find the solutions (x, v, z) = (1,1,0) and (2,3,0),
and there is no other solution forc € {1 1,17,19, 23} when z=1 and y < 3.

Theorem 4. For the prime numbers c € {1 1,13,17,19, 23} the Diophantine equation
3" -2V¢c"=-1
has nonnegative integral solutions: (x, y, z)=(1,2,0) and (0,1,0).

Proof: We prove the theorem in following cases.

Casel: c=11
For z > 1, using mod 11, we find
3*=3,9,5,4,1 (mod11)
and 2°11° =0 (mod11)
but —1=-1(mod11)=10 (mod11),

which is a contradiction and so there is no solution.



Considering y = 4, using mod 16, we find
3* =3,9,11,1 (mod16)
and 2°11° =0 (mod16)
but —1=-1(mod16)=15 (mod16)

which yields a contradiction and so there is no solution.

CaseIl: ¢ =13
For z > 1, using mod 13, we find
3* =3,9,1 (mod13)
and 2°13° =0 (mod13)
but —1=-1(mod13)=12 (mod13)
This yields a contradiction and so there is no solution for z >1.
For y >4, using mod 16, we find

3* =3,9,11,1 (mod16)
and 2°13° =0 (mod16)
but —1=-1(mod16)=15 (mod16),

which is a contradiction and so there is no solution.

CaseIIl: ¢ =17
For z > 1, using mod 17, we find x =0 (mod 8). But, if we use mod 193, we find a contradiction.
For y >4, using mod 16, we find
3*=3,9,11,1 (mod16)
and 2°17° =0 (mod16)
but —1=-1(mod16)=15 (mod16)

This yields a contradiction and so there is no solution.

CaseIV: ¢ =19
For z > 1, using mod 19 we obtain x =0 (m0d9). Now, if we use mod 7, we find a contradiction.
For y >4, using mod 16 we find
3*=3,9,11,1 (mod16)
and 2°19° =0 (mod16)
but —1=-1(mod16)=15 (mod16),

which is a contradiction and this yields that there is no solution.

CaseV: ¢ =23
For z > 1, using mod 23, we find

3* =3,9,4,12,13,16,2,6,18,8,1 (mod 23)
and 2723 =0 (mod 23)
but —1=-1(mod?23)=22 (mod?23),
which contradicts and yields that there is no solution for z > 1.
Considering y = 4, using mod 16, we find

3* =3,9,11,1 (mod16)
and 2723% =0 (mod16)
but —1=-1(mod16)=15 (mod16)



This yields a contradiction and so there is no solution.

Therefore, we conclude from the above cases that,
If z=0 and y <3, we find the solutions (x, v, z) = (1, 2,0) and (0,1,0).

If z=1 and y <3, there is no other solution.
Conclusion

We have solved the Diophantine equation 2* —3”c¢® =%1 for ce {23, 29,31,37,41} and 3" —2"¢*=%1 for
ce{11,13,17,19,23}.

The nonnegative integral common solution of 2* —3”¢* =1 for ce {23, 29,31,37,41} are (1, 0,0) and (2,1,0) but
when ¢ =31,(5,0,1) is also a solution, together with the common solution.

The equation 2* —3"¢* =—1 for ce {23, 29,31,37,41} has nonnegative integral solutions: (1, 1,0) and (3, 2,0).

The nonnegative integral common solution of 3* —2”¢* =1 for ce {1 1,13,17,19, 23} are (1, 1,0) and (2,3,0) but
when ¢ =11 and 13, (5,1,2) and (3,1,1) are also the solutions, respectively together with the common solution.

And the equation 3* —2"¢* =—1 for ce {1 1,13,17,19, 23} has nonnegative integral solutions: (1, 2,0) and (0,1,0).
The solution of this Diophantine equation for other prime numbers is also possible, but we have left that for future work.
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