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Abstract: Our main goal in this paper is to find the new results of some exponential Diophantine equations of the form 1±=−

zyx cba . We 

use the method of congruence with single modulus to find the new results for some Diophantine equations of this type. 

 

 

Introduction 

In the theory of finite nonabelian simple groups, there are many applications in Alex [2] and [3] of the exponential 

Diophantine equations of the following form 

                                       1±=−
zyx cba      (1) 

where ,,ba c  are positive integers and  unknowns zyx ,, are nonnegative integers. 

 
In Alex [3], author uses the congruence with a single modulus to obtain all the solutions for the following exponential 

Diophantine equations: 

1732 ±=−
zyx

     (2) 

1723 ±=−
zyx

     (3) 

and 

1327 ±=−
zyx

    (4) 

In Alex [2], author uses the same method to solve the following Diophantine equations: 

1532 ±=−
zyx

     (5) 

1752 ±=−
zyx

     (6) 

1523 ±=−
zyx

     (7) 

1325 ±=−
zyx

     (8) 

1725 ±=−
zyx

    (9) 

and 

1527 ±=−
zyx

                         (10) 

where the equations (7) & (8) are also solved in Brenner [4].  

Acu [1] solves the following Diophantine equations of the form (1) by using the elementary method, 

11132 ±=−
zyx

                 (11) 

11332 ±=−
zyx

                          (12) 

11732 ±=−
zyx

                          (13) 

11932 ±=−
zyx

                          (14) 

Teng [5] uses the same method to prove that the equation  

1321

321 ±=− ky

k

yyyx ppppa ΛΛ , 

where a  is a positive integer with 1>a  and kpppp ΛΛ,,, 321  are distinct primes with 

1),,,,(.. 321 =kppppadcg ΛΛ , has only finitely many positive integer solutions ),,,( 3,21 kyyyyx ΛΛ .  

We will use the same method of congruence with a single modulus to solve some new Diophantine equations of the form 

(1). 
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New Results 
 

Theorem 1. For the prime numbers { }41,37,31,29,23∈c  the Diophantine equation 

132 =−
zyx c  

has nonnegative integral common solutions: ( ) ( )0,0,1,, =zyx  and ( )0,1,2  but when 31=c , ( )1,0,5  is also a solution  

together with the common solutions. 

 

Proof:  The theorem is proved in the following cases. 

 

Case I: 23=c  

For 1≥z , we find by using mod 23 that ( )23mod1211
≡ , which implies ( )11mod0≡x . But, if we use mod 89, we also 

get ( )89mod1211
≡ , which is a contradiction and so there is no solution. 

Suppose 3≥y , we find by using mod 27 that ( )27mod1218
≡  and this implies ( )18mod0≡x . But, if we use mod 19, 

we also get ( )19mod1218
≡ , which is a contradiction and so there is no solution. 

 

Case II: 29=c  

For 1≥z , using mod 29 we find ( )28mod0≡x . But, if we use mod 5, we obtain a contradiction. 

Considering 3≥y , using mod 27, we obtain ( )18mod0≡x . But, if we use mod 7, we find a contradiction and so there 

is no solution. 

 

Case III: 31=c  

For 2≥z , using mod 961, we find ( )155mod0≡x . Now if we use mod 311, we obtain a contradiction. 

Considering 3≥y , using mod 27, we obtain ( )18mod0≡x . In this case we have a contradiction for mod 7 and so there 

is no solution. 

Therefore, 

If  1=z  and 2≤y , we find the solution ( ) ( )1,0,5,, =zyx . 

 

Case IV: 37=c  

For 1≥z , using mod 37 we find ( )36mod0≡x . Now, if we use mod 5, we find a contradiction. 

Suppose 3≥y , using mod 27 we obtain ( )18mod0≡x . This yields a contradiction mod 7 and so there is no solution. 

 

Case V: 41=c  

For 1≥z , using mod 41, we find ( )20mod0≡x . Now if we use mod 5, we obtain a contradiction. 

Considering 3≥y , using mod 27, we obtain ( )18mod0≡x . But, if we use mod 7, we find a contradiction and so there 

is no solution. 

 

Therefore, we conclude from the above cases that, 

If  0=z  and 2≤y , we find the solutions ( ) ( )0,0,1,, =zyx  and ( )0,1,2 , 

and there is no other solution for { }41,37,29,23∈c  when 1=z  and 2≤y . 

Theorem  2. For the prime numbers  { }41,37,31,29,23∈c  the Diophantine equation 

132 −=−
zyx c  

has nonnegative integral solutions: ( ) ( )0,1,1,, =zyx  and ( )0,2,3 . 

 

 

 

 



 5 

Proof:  We prove the theorem in following cases. 

 

Case I: 23=c   

Considering 1≥z , we find by using mod 23 that 

   ( )23mod1,12,6,3,13,18,9,16,8,4,22 ≡
x

  

and  ( )23mod0233 ≡
zy

 

but   ( ) ( )23mod2223mod11 ≡−≡−   

This is a contradiction and yields no solution for 1≥z . 

For 3≥y , using mod 27, we obtain ( )9mod0≡x . But, if we use mod 19, we find a contradiction and so there is no 

solution. 

 

Case II: 29=c  

For 1≥z , using mod 29, we find ( )14mod0≡x . Now, if we use mod 5, we obtain a contradiction. 

Suppose 3≥y , using mod 27, we obtain ( )9mod0≡x . But, if we use mod 19, we find a contradiction and so there is 

no solution. 

 

Case III: 31=c  

Considering 1≥z , we find by using mod 31 that 

( )31mod1,16,8,4,22 ≡
x

  

and  ( )31mod0313 ≡
zy

 

but   ( ) ( )31mod3031mod11 ≡−≡− ,  

This yields a contradiction and so there is no solution for 1≥z . 

For 3≥y , using mod 27, we obtain ( )9mod0≡x . But, if we use mod 19, we find a contradiction and so there is no 

solution. 

 

Case IV: 37=c   

Suppose 1≥z , using mod 37, we find ( )18mod0≡x . Now if we use mod 5, we find a contradiction. 

For 3≥y , using mod 27, we obtain ( )9mod0≡x . But, if we use mod 19, we find a contradiction and so there is no 

solution. 

 

Case V: 41=c  

For 1≥z , using mod 41, we find ( )10mod0≡x . Now if we use mod 5, we obtain a contradiction. 

Assume 3≥y , using mod 27, we obtain ( )9mod0≡x . But, if we use mod 19, we find a contradiction and so there is no 

solution. 

 
Therefore, we conclude from the above cases that, 

If  0=z  and 2≤y , we find the solutions ( ) ( )0,1,1,, =zyx  and ( )0,2,3 . 

If  1=z  and 2≤y , there is no other solution. 

 

Theorem 3. For the prime numbers { }23,19,17,13,11∈c  the Diophantine equation 

123 =−
zyx c  

has nonnegative integral common solutions: ( ) ( )0,1,1,, =zyx  and ( )0,3,2  but when 11=c and 13 , ( )2,1,5  and ( )1,1,3  

are also the solutions, respectively together with the common solutions. 
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Proof:  We prove the theorem in following cases. 

 

Case I: 11=c  

For 3≥z , we find by using mod 1331 that ( )1331mod1355
≡ , which implies ( )55mod0≡x . But, if we use mod 23, 

we also get ( )23mod1355
≡ , which is a contradiction. 

Suppose 4≥y , we find by using mod 16 that ( )16mod134
≡  so that ( )4mod0≡x . But, if we use mod 5, we also get 

( )5mod134
≡ , which is a contradiction and so there is no solution. 

Therefore, 

If  2=z  and 3≤y , we find the solutions ( ) ( )2,1,5,, =zyx . 

 

Case II: 13=c  

For 2≥z , using mod 169, we obtain ( )39mod0≡x . Further, using mod 313, we obtain a contradiction. 

Suppose 4≥y , using mod 16, we find ( )4mod0≡x . This yields a contradiction for mod 5 and so there is no solution. 

Therefore, 

If  1=z  and 3≤y , we find the solutions ( ) ( )1,1,3,, =zyx . 

 

Case III: 17=c  

 For 1≥z , using mod 17, we find ( )16mod0≡x . Now, if we use mod 5, we find a contradiction. 

Considering 4≥y , using mod 16, we obtain ( )4mod0≡x . In this case we have a contradiction for mod 5 and so there 

is no solution. 

 

Case IV: 19=c  

For 1≥z , using mod 19, we find ( )18mod0≡x . But, if we use mod 7, we obtain a contradiction. 

Suppose 4≥y , using mod 16, we find ( )4mod0≡x . This yields a contradiction for mod 5 and so there is no solution. 

 

Case V: 23=c  

For 1≥z , using mod 23, we find ( )11mod0≡x . Now, if we use mod 3851, we find a contradiction. 

Suppose 4≥y , using mod 16, we obtain ( )4mod0≡x . This yields a contradiction for mod 5 and so there is no 

solution. 

 

Therefore, we conclude from the above cases that, 

If  0=z  and 3≤y , we find the solutions ( ) ( )0,1,1,, =zyx  and ( )0,3,2 , 

and there is no other solution for { }23,19,17,11∈c  when 1=z  and 3≤y . 

 

Theorem 4. For the prime numbers { }23,19,17,13,11∈c  the Diophantine equation 

123 −=−
zyx c  

has  nonnegative integral solutions: ( ) ( )0,2,1,, =zyx  and ( ).0,1,0  

 

Proof: We prove the theorem in following cases. 

 

Case 1: 11=c  

For 1≥z , using mod 11, we find 

   ( )11mod1,4,5,9,33 ≡
x

 

and  ( )11mod0112 ≡
zy

 

but   ( ) ( )11mod1011mod11 ≡−≡− , 

which is a contradiction and so there is no solution. 
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Considering 4≥y , using mod 16, we find 

   ( )16mod1,11,9,33 ≡
x

 

and  ( )16mod0112 ≡
zy

 

but   ( ) ( )16mod1516mod11 ≡−≡−  

which yields a contradiction and so there is no solution. 

 

Case II: 13=c  

For 1≥z , using mod 13, we find 

   ( )13mod1,9,33 ≡
x

 

and  ( )13mod0132 ≡
zy

 

but   ( ) ( )13mod1213mod11 ≡−≡−  

This yields a contradiction and so there is no solution for 1≥z . 

For 4≥y , using mod 16, we find 

   ( )16mod1,11,9,33 ≡
x

 

and  ( )16mod0132 ≡
zy

 

but   ( ) ( )16mod1516mod11 ≡−≡− , 

which is a contradiction and so there is no solution. 

 

Case III: 17=c  

For 1≥z , using mod 17, we find ( )8mod0≡x . But, if we use mod 193, we find a contradiction. 

For 4≥y , using mod 16, we find 

   ( )16mod1,11,9,33 ≡
x

 

and  ( )16mod0172 ≡
zy

 

but   ( ) ( )16mod1516mod11 ≡−≡−  

This yields a contradiction and so there is no solution. 

 

Case IV: 19=c  

For 1≥z , using mod 19 we obtain ( )9mod0≡x . Now, if we use mod 7, we find a contradiction. 

For 4≥y , using mod 16 we find 

   ( )16mod1,11,9,33 ≡
x

 

and  ( )16mod0192 ≡
zy

 

but   ( ) ( )16mod1516mod11 ≡−≡− , 

which is a contradiction and this yields that there is no solution. 

 

Case V: 23=c  

For 1≥z , using mod 23, we find 

   ( )23mod1,8,18,6,2,16,13,12,4,9,33 ≡
x

 

and  ( )23mod0232 ≡
zy

 

but   ( ) ( )23mod2223mod11 ≡−≡− , 

which contradicts and yields that there is no solution for 1≥z . 

Considering 4≥y , using mod 16, we find 

   ( )16mod1,11,9,33 ≡
x

  

and  ( )16mod0232 ≡
zy

 

but   ( ) ( )16mod1516mod11 ≡−≡−  
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This yields a contradiction and so there is no solution. 

 
Therefore, we conclude from the above cases that, 

If  0=z  and 3≤y , we find the solutions ( ) ( )0,2,1,, =zyx and ( ).0,1,0  

If  1=z  and 3≤y , there is no other solution. 

 
Conclusion 
 

We have solved the Diophantine equation 132 ±=−
zyx c  for { }41,37,31,29,23∈c  and 123 ±=−

zyx c  for 

{ }23,19,17,13,11∈c . 

The nonnegative integral common solution of 132 =−
zyx c  for { }41,37,31,29,23∈c  are ( )0,0,1  and ( )0,1,2  but 

when 31=c , ( )1,0,5  is also a solution, together with the common solution. 

The equation 132 −=−
zyx c  for { }41,37,31,29,23∈c  has nonnegative integral solutions:  ( )0,1,1  and ( )0,2,3 .  

The nonnegative integral common solution of 123 =−
zyx c  for { }23,19,17,13,11∈c  are ( )0,1,1  and ( )0,3,2  but 

when 11=c  and 13 , ( )2,1,5  and ( )1,1,3  are also the solutions, respectively together with the common solution. 

And the equation 123 −=−
zyx c  for { }23,19,17,13,11∈c  has nonnegative integral solutions: ( )0,2,1  and ( ).0,1,0   

The solution of this Diophantine equation for other prime numbers is also possible, but we have left that for future work. 
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