The AUST Journal of Science and Technology Vol. 3 No. 2 July 2011 (Published in January 2013)

Ahsanullah University of Science and Technology

Editorial Board

Prof. Dr. Kazi Shariful Alam Treasurer, AUST

Prof. Dr M.A. Muktadir Head, Department of Architecture, AUST

> Prof. A.Z.M. Anisur Rahman Head, School of Business, AUST

Prof. Dr. Md. Anwarul Mustafa Head, Department of Civil Engineering, AUST

Prof. Dr. S. M. Abdullah Al-Mamun Head, Department of Computer Science & Engineering, AUST

Prof. Dr. Abdur Rahim Mollah Head, Department of Electrical & Electric Engineering, AUST.

Prof. Dr. Mustafizur Rahman Head, Department of Textile Engineering, AUST.

Prof. Dr. AFM Anwarul Haque Head, Department of Mechanical and Production Engineering, AUST.

> Prof. Dr. M. Shahabuddin Head, Department of Arts & Sciences, AUST

Editor

Prof. Dr. Kazi Shariful Alam Treasurer Ahsanullah University of Science and Technology

Solution of the Diophantine Equation of the form $a^x - b^y c^z = \pm 1$

Md. Shameem Reza¹, M Nazrul Islam²

Abstract: Our main goal in this paper is to find the new results of some exponential Diophantine equations of the form $a^x - b^y c^z = \pm 1$. We use the method of congruence with single modulus to find the new results for some Diophantine equations of this type.

Introduction

In the theory of finite nonabelian simple groups, there are many applications in Alex [2] and [3] of the exponential Diophantine equations of the following form

$$a^x - b^y c^z = \pm 1 \tag{1}$$

where a, b, c are positive integers and unknowns x, y, z are nonnegative integers.

In Alex [3], author uses the congruence with a single modulus to obtain all the solutions for the following exponential Diophantine equations:

$$2^{x} - 3^{y}7^{z} = \pm 1$$
 (2)
$$3^{x} - 2^{y}7^{z} = \pm 1$$
 (3)

and

$$7^x - 2^y 3^z = \pm 1 \tag{4}$$

In Alex [2], author uses the same method to solve the following Diophantine equations:

$2^x - 3^y 5^z = \pm 1$	(5)
$2^x - 5^y 7^z = \pm 1$	(6)
$3^x - 2^y 5^z = \pm 1$	(7)
$5^x - 2^y 3^z = \pm 1$	(8)
$5^x - 2^y 7^z = \pm 1$	(9)

and

$$7^{x} - 2^{y}5^{z} = \pm 1$$
 (10)
where the equations (7) & (8) are also solved in Brenner [4].

Acu [1] solves the following Diophantine equations of the form (1) by using the elementary method,

$2^x - 3^y 11^z = \pm 1$	(11)
$2^{x} - 3^{y} 1 3^{z} = \pm 1$	(12)
$2^{x} - 3^{y} 17^{z} = \pm 1$	(13)
$2^{x} - 3^{y} 19^{z} = \pm 1$	(14)

Teng [5] uses the same method to prove that the equation

$$a^{x} - p_{1}^{y_{1}} p_{2}^{y_{2}} p_{3}^{y_{3}} \Lambda \Lambda p_{k}^{y_{k}} = \pm 1$$

where *a* is a positive integer with a > 1 and $p_1, p_2, p_3, \Lambda \Lambda p_k$ are distinct primes with g.c.d $(a, p_1, p_2, p_3, \Lambda \Lambda p_k) = 1$, has only finitely many positive integer solutions $(x, y_1, y_2, y_3, \Lambda \Lambda y_k)$.

We will use the same method of congruence with a single modulus to solve some new Diophantine equations of the form (1).

¹ Assistant Professor, Department of Arts and Sciences, Ahsanullah University of Science & Technology

² Associate Professor, Department of Mathematics, Jahangirnagar University, Savar, Dhaka, Bangladesh.

New Results

Theorem 1. For the prime numbers $c \in \{23, 29, 31, 37, 41\}$ the Diophantine equation

$$2^x - 3^y c^z = 1$$

has nonnegative integral common solutions: (x, y, z) = (1, 0, 0) and (2, 1, 0) but when c = 31, (5, 0, 1) is also a solution together with the common solutions.

Proof: The theorem is proved in the following cases.

Case I: *c* = 23

For $z \ge 1$, we find by using *mod* 23 that $2^{11} \equiv 1 \pmod{23}$, which implies $x \equiv 0 \pmod{11}$. But, if we use *mod* 89, we also get $2^{11} \equiv 1 \pmod{89}$, which is a contradiction and so there is no solution.

Suppose $y \ge 3$, we find by using *mod* 27 that $2^{18} \equiv 1 \pmod{27}$ and this implies $x \equiv 0 \pmod{18}$. But, if we use *mod* 19, we also get $2^{18} \equiv 1 \pmod{19}$, which is a contradiction and so there is no solution.

Case II: *c* = 29

For $z \ge 1$, using *mod* 29 we find $x \equiv 0 \pmod{28}$. But, if we use *mod* 5, we obtain a contradiction.

Considering $y \ge 3$, using mod 27, we obtain $x \equiv 0 \pmod{18}$. But, if we use mod 7, we find a contradiction and so there is no solution.

Case III: *c* = 31

For $z \ge 2$, using *mod* 961, we find $x \equiv 0 \pmod{155}$. Now if we use *mod* 311, we obtain a contradiction.

Considering $y \ge 3$, using *mod* 27, we obtain $x \equiv 0 \pmod{18}$. In this case we have a contradiction for *mod* 7 and so there is no solution.

Therefore,

If z = 1 and $y \le 2$, we find the solution (x, y, z) = (5, 0, 1).

Case IV: c = 37

For $z \ge 1$, using *mod* 37 we find $x \equiv 0 \pmod{36}$. Now, if we use *mod* 5, we find a contradiction. Suppose $y \ge 3$, using *mod* 27 we obtain $x \equiv 0 \pmod{18}$. This yields a contradiction *mod* 7 and so there is no solution.

Case V: c = 41

For $z \ge 1$, using *mod* 41, we find $x \equiv 0 \pmod{20}$. Now if we use *mod* 5, we obtain a contradiction. Considering $y \ge 3$, using *mod* 27, we obtain $x \equiv 0 \pmod{18}$. But, if we use *mod* 7, we find a contradiction and so there is no solution.

Therefore, we conclude from the above cases that,

If z = 0 and $y \le 2$, we find the solutions (x, y, z) = (1, 0, 0) and (2, 1, 0), and there is no other solution for $c \in \{23, 29, 37, 41\}$ when z = 1 and $y \le 2$. **Theorem 2.** For the prime numbers $c \in \{23, 29, 31, 37, 41\}$ the Diophantine equation $2^x - 3^y c^z = -1$

has nonnegative integral solutions: (x, y, z) = (1, 1, 0) and (3, 2, 0).

Proof: We prove the theorem in following cases.

Case I: c = 23

Considering $z \ge 1$, we find by using *mod* 23 that

 $2^x \equiv 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1 \pmod{23}$

and $3^y 23^z \equiv 0 \pmod{23}$

but $-1 \equiv -1 \pmod{23} \equiv 22 \pmod{23}$

This is a contradiction and yields no solution for $z \ge 1$.

For $y \ge 3$, using *mod* 27, we obtain $x \equiv 0 \pmod{9}$. But, if we use *mod* 19, we find a contradiction and so there is no solution.

Case II: *c* = 29

For $z \ge 1$, using mod 29, we find $x \equiv 0 \pmod{14}$. Now, if we use mod 5, we obtain a contradiction.

Suppose $y \ge 3$, using *mod* 27, we obtain $x \equiv 0 \pmod{9}$. But, if we use *mod* 19, we find a contradiction and so there is no solution.

Case III: c = 31

Considering $z \ge 1$, we find by using *mod* 31 that

and $2^x \equiv 2, 4, 8, 16, 1 \pmod{31}$ $3^y 31^z \equiv 0 \pmod{31}$

but $-1 \equiv -1 \pmod{31} \equiv 30 \pmod{31}$,

This yields a contradiction and so there is no solution for $z \ge 1$.

For $y \ge 3$, using mod 27, we obtain $x \equiv 0 \pmod{9}$. But, if we use mod 19, we find a contradiction and so there is no solution.

Case IV: *c* = 37

Suppose $z \ge 1$, using mod 37, we find $x \equiv 0 \pmod{18}$. Now if we use mod 5, we find a contradiction.

For $y \ge 3$, using mod 27, we obtain $x \equiv 0 \pmod{9}$. But, if we use mod 19, we find a contradiction and so there is no solution.

Case V: c = 41

For $z \ge 1$, using mod 41, we find $x \equiv 0 \pmod{10}$. Now if we use mod 5, we obtain a contradiction.

Assume $y \ge 3$, using *mod* 27, we obtain $x \equiv 0 \pmod{9}$. But, if we use *mod* 19, we find a contradiction and so there is no solution.

Therefore, we conclude from the above cases that, If z = 0 and $y \le 2$, we find the solutions (x, y, z) = (1, 1, 0) and (3, 2, 0). If z = 1 and $y \le 2$, there is no other solution.

Theorem 3. For the prime numbers $c \in \{11,13,17,19,23\}$ the Diophantine equation

$$3^{x} - 2^{y}c^{z} = 1$$

has nonnegative integral common solutions: (x, y, z) = (1,1,0) and (2,3,0) but when c = 11 and 13, (5,1,2) and (3,1,1) are also the solutions, respectively together with the common solutions.

Proof: We prove the theorem in following cases.

Case I: *c* = 11

For $z \ge 3$, we find by using *mod* 1331 that $3^{55} \equiv 1 \pmod{1331}$, which implies $x \equiv 0 \pmod{55}$. But, if we use *mod* 23, we also get $3^{55} \equiv 1 \pmod{23}$, which is a contradiction.

Suppose $y \ge 4$, we find by using *mod* 16 that $3^4 \equiv 1 \pmod{16}$ so that $x \equiv 0 \pmod{4}$. But, if we use *mod* 5, we also get $3^4 \equiv 1 \pmod{5}$, which is a contradiction and so there is no solution. Therefore,

If z = 2 and $y \le 3$, we find the solutions (x, y, z) = (5, 1, 2).

Case II: c = 13

For $z \ge 2$, using *mod* 169, we obtain $x \equiv 0 \pmod{39}$. Further, using *mod* 313, we obtain a contradiction.

Suppose $y \ge 4$, using *mod* 16, we find $x \equiv 0 \pmod{4}$. This yields a contradiction for *mod* 5 and so there is no solution. Therefore,

If z = 1 and $y \le 3$, we find the solutions (x, y, z) = (3, 1, 1).

Case III: c = 17

For $z \ge 1$, using mod 17, we find $x \equiv 0 \pmod{16}$. Now, if we use mod 5, we find a contradiction.

Considering $y \ge 4$, using *mod* 16, we obtain $x \equiv 0 \pmod{4}$. In this case we have a contradiction for *mod* 5 and so there is no solution.

Case IV: *c* = 19

For $z \ge 1$, using *mod* 19, we find $x \equiv 0 \pmod{18}$. But, if we use *mod* 7, we obtain a contradiction.

Suppose $y \ge 4$, using *mod* 16, we find $x \equiv 0 \pmod{4}$. This yields a contradiction for *mod* 5 and so there is no solution.

Case V: c = 23

For $z \ge 1$, using *mod* 23, we find $x \equiv 0 \pmod{11}$. Now, if we use *mod* 3851, we find a contradiction.

Suppose $y \ge 4$, using *mod* 16, we obtain $x \equiv 0 \pmod{4}$. This yields a contradiction for *mod* 5 and so there is no solution.

Therefore, we conclude from the above cases that, If z = 0 and $y \le 3$, we find the solutions (x, y, z) = (1,1,0) and (2,3,0), and there is no other solution for $c \in \{11,17,19,23\}$ when z = 1 and $y \le 3$.

Theorem 4. For the prime numbers $c \in \{11, 13, 17, 19, 23\}$ the Diophantine equation

 $3^x - 2^y c^z = -1$ has nonnegative integral solutions: (x, y, z) = (1, 2, 0) and (0, 1, 0).

Proof: We prove the theorem in following cases.

Case 1: c = 11For $z \ge 1$, using *mod* 11, we find $3^x \equiv 3,9,5,4,1 \pmod{11}$ and $2^y 11^z \equiv 0 \pmod{11}$ but $-1 \equiv -1 \pmod{11} \equiv 10 \pmod{11}$, which is a contradiction and so there is no solution. Considering $y \ge 4$, using *mod* 16, we find $3^x \equiv 3,9,11,1 \pmod{16}$ and $2^y 11^z \equiv 0 \pmod{16}$ but $-1 \equiv -1 \pmod{16} \equiv 15 \pmod{16}$

which yields a contradiction and so there is no solution.

Case II: c = 13For $z \ge 1$, using *mod* 13, we find $3^x \equiv 3,9,1 \pmod{13}$ and $2^y 13^z \equiv 0 \pmod{13}$ but $-1 \equiv -1 \pmod{13} \equiv 12 \pmod{13}$ This yields a contradiction and so there is no solution for $z \ge 1$. For $y \ge 4$, using *mod* 16, we find

 $3^{x} \equiv 3,9,11,1 \pmod{16}$ and $2^{y}13^{z} \equiv 0 \pmod{16}$ but $-1 \equiv -1 \pmod{16} \equiv 15 \pmod{16},$ ch is a contradiction and so there is no solution

which is a contradiction and so there is no solution.

Case III: c = 17

For $z \ge 1$, using *mod* 17, we find $x \equiv 0 \pmod{8}$. But, if we use *mod* 193, we find a contradiction. For $y \ge 4$, using *mod* 16, we find

 $3^{x} \equiv 3,9,11,1 \pmod{16}$ and $2^{y}17^{z} \equiv 0 \pmod{16}$ but $-1 \equiv -1 \pmod{16} \equiv 15 \pmod{16}$

This yields a contradiction and so there is no solution.

Case IV: c = 19

For $z \ge 1$, using *mod* 19 we obtain $x \equiv 0 \pmod{9}$. Now, if we use *mod* 7, we find a contradiction. For $y \ge 4$, using *mod* 16 we find

 $3^{x} \equiv 3,9,11,1 \pmod{16}$ and $2^{y}19^{z} \equiv 0 \pmod{16}$ but $-1 \equiv -1 \pmod{16} \equiv 15 \pmod{16},$

which is a contradiction and this yields that there is no solution.

Case V: c = 23For $z \ge 1$, using *mod* 23, we find $3^{x} \equiv 3,9,4,12,13,16,2,6,18,8,1 \pmod{23}$ and $2^{y}23^{z} \equiv 0 \pmod{23}$ but $-1 \equiv -1 \pmod{23} \equiv 22 \pmod{23}$, which contradicts and yields that there is no solution for $z \ge 1$.

Considering $y \ge 4$, using *mod* 16, we find

 $3^{x} \equiv 3,9,11,1 \pmod{16}$ and $2^{y}23^{z} \equiv 0 \pmod{16}$ but $-1 \equiv -1 \pmod{16} \equiv 15 \pmod{16}$ This yields a contradiction and so there is no solution.

Therefore, we conclude from the above cases that,

If z = 0 and $y \le 3$, we find the solutions (x, y, z) = (1, 2, 0) and (0, 1, 0).

If z = 1 and $y \le 3$, there is no other solution.

Conclusion

We have solved the Diophantine equation $2^x - 3^y c^z = \pm 1$ for $c \in \{23, 29, 31, 37, 41\}$ and $3^x - 2^y c^z = \pm 1$ for $c \in \{11, 13, 17, 19, 23\}.$

The nonnegative integral common solution of $2^x - 3^y c^z = 1$ for $c \in \{23, 29, 31, 37, 41\}$ are (1, 0, 0) and (2, 1, 0) but when c = 31, (5, 0, 1) is also a solution, together with the common solution.

The equation $2^x - 3^y c^z = -1$ for $c \in \{23, 29, 31, 37, 41\}$ has nonnegative integral solutions: (1, 1, 0) and (3, 2, 0).

The nonnegative integral common solution of $3^x - 2^y c^z = 1$ for $c \in \{11, 13, 17, 19, 23\}$ are (1, 1, 0) and (2, 3, 0) but when c = 11 and 13, (5,1,2) and (3,1,1) are also the solutions, respectively together with the common solution.

And the equation $3^x - 2^y c^z = -1$ for $c \in \{11, 13, 17, 19, 23\}$ has nonnegative integral solutions: (1, 2, 0) and (0, 1, 0).

The solution of this Diophantine equation for other prime numbers is also possible, but we have left that for future work.

References

- 1. Acu, D. "On some exponential Diophantine equation of the form $a^x b^y c^z = \pm 1$ ", Analele Universitatii din Timisoara, Vol.XXXIV, fasc. 2, (1996), 167-171.
- 2. Alex, L. J. "Simple groups of order $2^a 3^b 5^c 7^d p$ ", Trans. Amer. Math. Soc., 173 (1972), 389-399.
- 3. Alex, L. J. "On simple groups of order $2^a 3^b 7^c p$ ", Journal of Algebra, 25 (1) (1973), 113-124.
- 4. Brenner, J. L. and Foster, L. L. "Exponential Diophantine equations", Pacific J. Math. 101 (2) (1982), 263-301
 5. Teng, Y. H. "On the Diophantine equation a^x p₁^{y₁} p₂^{y₂} Λ Λ p_k^{y_k} = ±1", (Chinese), Heilongjiang Daxue Ziran Kexue Xuebao 8 (4) (1991), 57-59 (MR 93 c: 11019).