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List of Experiments:

1.

To determine the modulys of rigidity of the material of 2 wire by the method of
oscillations (Dynamic method),

To determine the wa

. velength of 2 monochromatic light by a Spectrometer using a plane
diffraction grating. H -

ence to calculate the dispersive power of the grating.

To determine the value of acceleration due to gravity (g) by means of a Compound
pendulum,

To determine the specific heat of a liquid by the method of cooling,

To determine the value of the mechanical equivalent of heat (J) by electrical method.

To determine the thermal

conductivity of a bad conductor by Lee’s and Charlton’s
method.

To determine the Spring constant and effective mass of a given spiral spring.

Reference Books:

1. Practical Physics by Dr. Giasuddin Ahmed and Md. Shahabuddin
2. Physics-1 & 11 by R. Resnick, D, Halliday

3. Practical Physics by RK Shukla, Anchal Srivastava
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Experiment no 1+

\ 5 S . ] . " miar i 1 ]
g\ama of the Experiment: Determination of the madulus of rigidity of the material of a wire
Y the method of oscillations (D ynamic Method).

Theory:
) A cylindrical body is supported by a vertical wire of length / and radius » as shown in
Fig. 1.1. The axis of the wire passes through its center of gravity. If the body is twisted
through an angle and released, it will execute torsional oscillations about a vertical axis.
Therefore, the motion is simple harmonic. If at any instant the angle of twist is ¢, the moment
of the torsional couple exerted by the wire will be
nar’

2/

&

g=Co,

/<
Tr’ o, :
where C = '721 is a constant and » is the modulus of
rigidity of the material of the wire.
Therefore, the time period for torsional oscillations is,

C.

where [ is the moment of inertia of the cylindrical body

which is given by / :-;—M.ff. here M and a are the mass and

radius of the cylinder respectively.
From above two equations, we get
o 42’1 Sall
- - F]
& & Fig. 1.1: Torsional pendulum

8xll
or, n= # dyncs/cmz

Apparatus:

A uniform wire, A cylindrical bar, Suitable clamp, Stopwatch, Screw gauge, Slide
calipers, Meter scale, etc.

Brief Procedure:

I. Find out the value of one smallest division of the main scale and the total number of
divisions of the vernier scale of the slide calipers and calculate vernier constant (V.C).

2. Find out the value of one smallest division of the linear scale, value of pitch (the

distance along the lincar scale traveled by circular scale when it completes one

rotation) and the total number of divisions of the circular scale of the screw gauge and

calculate lcast count (L.C).

Measure the radius, a of the cylinder by using the slide calipers.

Measure the mass. M of the cylinder. Calculate moment of inertia,

Measure the radius, r of the wire by using the screw gauge,

Measure the length, [ of the wire between the point of suspension and the point at

which the wire is attached to the cylinder with a meter scale.

7. Twist the cylinder from its equilibrium position through a small angle and release so
that it begins to oscillate. Measure the time for 30 complete oscillations with a stop
watch. Find out the time period of oscillation,
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8. Calculate the value of the modulus of rigidity () of the material of the given W

Experimental Data:
Vernier Constant (V.C.) of the slide calipers,

The value of one smallest division of the main scale
" Total number of divisions in the vernier scale

v.C.

Least Count (L.C.) of the Screw Gauge
C Pitch
" Total number of divisions in the circular scale

Table-1: Table for the radius of the cylinder

N Msin &5ai Vernier | Vemier | Vemier scale T Mean Instru- C9rreCted ’7Radlus..
= AL | sl constant, reading, PICEn | diameter, | mental | diameter, o
of | reading, x s = Xty D a
Ea (cm) division, Ve y=V.xd fin) D error
20N S d (cm) (cm) m (cm) (cm) (cm) (cm)
1
2
3
4
5
Table-2: Table for the radius of the wire
4 : : " Radius,
No. Linear Circular | Least ClrculaTr scale Bifawiten, _Mcan Instru Chircseii !
scale scale count, reading, diameter, | mental : _D
of : et = Xty diameter, r=—
ok reading. x | division, L. y=dxL, (em) D error D (cm) 2
(cm) d (em) | ¢ (cm) (cm) (cm) (cm)
1
2
3
4
S
Table-3: Table for the time period
No. of obs. Time for 30 oscillations, ¢ (sec) Time period, T=$ (sec) Mean T (sec)
[ 1
[ 2
I
[ 4
L s
Length of the wire, I: (i) em (i) cm (i) cm
Average length of the wire, / = cm
Calculations:

Moment of Inertia of the cylinder, s | Ma? g-cm?
2
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Modulus of nigidity of the wire, 5 = _-i;; dynesfcm’
Error Calculation:
Standard value of the modulus of rigidity of the material of the wire (steel) =

8.4 x 10" dynes cm™.

PO 1 tal value
standard value ~ Experimenta « 100 %
Standard value

Percentage error =

Result:

Discussions:
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Experiment no 2:

Name of the Experiment: Determination of the wavelength of a man?clzrw_naﬂc light b);h‘;
Spectrometer using a plane diffraction grating and calculation of the dispersive power of

grating.

Theory:

Diffraction grating is an array of a large number of parallel slits, all with the same
width and spaced equal distances between the centers. When a monocl}romanc light of
wavelength 2 sent from collimator falls normally on a diffraction grating placed on a

Spectrometer table (Fig. 2.1), a series of diffracted images will be seen on both sides of the
direct image.

If 0 be the deviation of light for n" order image and (a+5) be the grating element then
from the equation of diffraction,

(a+b)sind =na (€))

Thus, the wavelength of a monochromatic light is

sin @ 2
nN

A=

where N = (u—ib—) is the number of lines or rulings per cm of the grating surface also known

as grating constant.

Knowing the values of n, N and 6, wavelength 2 of the monochromatic light can be found.

43
: | Collimatar

Scalel

Rotating
table

Scalc Il

Position A Position B

v
Direct image

Fig. 2.1: Diffraction grating and spectrometer arrangement

Differentiating equation (2) with respect to A we have

de _ nN
dA " cos@

This equation gives the angular dispersive power of the grating, i.e. it’s the capacity of the
grating to disperse different wavelengths.
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Apparatus:

Spectrometer, Plane diffraction grating, sodium lamp set, etc.

Brief Procedure:

Record the grating constant.

Determine the vernier constant (mentioned in Exp. 1) of the scale of spectrometer.
Mount the grating on the spectrometer table with the grating ruling parallel to the
collimator slit and plane of grating perpendicular to the collimator axis. Do not move
it throughout the experiment. :

Focus the eyepiece on the cross-wires illuminated by the light from the slit by sliding
the eyepiece Jens in and out until the cross-wires appear sharpest.

Tum the telescope to one side of central position (Say left side, A4) until an image of
first order diffraction appears on the cross-wires and then record the readings from
both scales I & II.

Similarly find the image of first order diffraction on the other side (e.g. right side, B)
of central position and record the readings as before.

Calculate the differences (4~B) between scale | and scale II readings and determine

the angle of diffraction.
Calculate the wavelength of the monochromatic light and dispersive power of the

diffraction grating using the given equations.

Experimental data:

. lines lines
Grating constant, N = - —
inch cm

Vernier constant of the spectrometer,

The value of one smallest division of the main scale
Total number of divisions in the vernier scale

V.C

Table-1: Table for the angle of diffraction

Reading for the angle of diffraction, 6
- Left side Right side -
El - v
o o
HE: 2w : s 3
E o A= o B = o | E o [l == vl ]
Sl2lex 5ol 8% |f |ex_|5<|85(2% (£ 153 T8
I R R R G e E R R R R R IR
clslgmgles]|Z 8] 2L 8 8lg w8l @ Eg| el S0 By = & 5
@ | > o] - 0] e & = = Py g ol 0 - e - v | =
210 £ o rlomwlsg .wl<a Smsz|loels 0|0 alas| 2| 3
Pl |ES o220 & = edu S LD|ExQ .21 =T = g -0 “lal=
s s E>xl-B|Ec0|ZFS|laasEeEs|o c Tlimo|N P
(= o c=lea=|sES|83 o e2l= ol o2 IEE
=¥ gl L o5 = s 8 so|leEx| 63 o=
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Calculation:

Wavelength of the monochromatic light,

o MR cm = A
n
Dispersive power of the grating
do_
d  cos@

Error Calculation:

Standard value of the wavelength of sodium light is 5890 A.

Standard value ~ Experimental value
Percentage error =
Standard value

x 100 %

Results:

Discussions:

& = T
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Experiment no 3:

f ’ ] . .
!\an:e of the Experiment: Determination of the radius of curvature of a plano-convex lens
by Newton’s rings.

Theory:

The phenomenon of Newton's rings is an interference pattern caused by the reflection
anc! transmission of light between a spherical surface and an adjacent flat surface which form
a air thin film. When viewed with monochromatic light as shown in Fig. 3.1a, it appears as a
series of concentric, alternating bright and dark rings as shown in Fig. 3.1b centered at the
point of contact between the two surfaces. '

(a) (b)

Fig.3.1: (2) Experimental setup of Newton's rings. (b) Pattern of the rings

™ bright or dark rings are

Now the diameters of the n
D2 =2(2n+ 1)AR  (Bright Rings)
D,,’ = 4nAR, (Dark Rings)

where R is the radius of curvature of the lens and 1 is the wavelength of the monochromatic
light.
Similarly, the diameters of the (n+p)" bright or dark rings are
Dn,2 =2{2(n+ p) + 1]JAR  (Bright Rings)
Dn.,’ =4(n +p)AR (Dark Rings)
Subtracting D,? from D, .,,‘7, we have -
D,/ - D)) = 4pAR, for either bright or dark rings,

_ DDy
4pl
The above equation is employed to compute the radius of curvature R of a lens.

or, g

Travelling microscope, Plano-convex lens, Sodium lamp set, etc.

Brief Procedure:

|. Determine the least count (mentioned in Exp. 1) of the micrometer screw of the
travelling microscope.
2. Set the intersecting point of the cross-wires of the eye piece at the middle of the

central dark spot.

8
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3. Slide the cross-wires to 12 dark ring on the left side of the central dark spot.

4. Set the vertical line of the cross-wire tangentially to 10" dark ring and note the

readings of the linear scale and circular divisions. _ o

Set the cross-wire in the same manner to the T - » Istrings by sliding the

microscope in the same direction, ;

6. Cross the central dark spot by sliding the cross-wires and note the scale readings by
setting the cross-wire to the right side of the 1% ring. L

7. Now move the cross-wires in the same direction and record the scale readings in the
same manner for successive dark rings up to the 10" ring on the right side.

8. Draw a best fit straight line through origin on a graph paper with square of the
diameter as ordinate and number of the ring as abscissa. Calculate the slope of the
line.

9. Calculate the radius of Curvature of the plano-convex lens by using the given
equation.

w

Experimental Data:

Least Count (L.C) of the micrometer scale
Pitch
L.C =

= Total number of divisions in the circular scale
Table: Table for the diameter of the rings

Readings of the microscope
Left Side (L) Right Side (R) = =

o _‘_5& ..E
= o R o [*) & L) o o

& = »d = ... o | > ) 2
Eld= 183 ExiBuy |D Al B3 [E=l8ay |2 8.4 g
= |8 = @ ¢ 2 E |» o =~ e~ & ehm o g 2E o - = -~ = ja)

cEl 38| Sc|8SxE|SE|2PE| SE SU|l55XE|l =&

§58 S2|z=|38v5(55 §33| 52 |S535/ 58 a

g s~ 3% s J |2l = g g 0.z |gd|d el =

= 55 o e > = 5= =T |5 .5 =

= &} =1 O (5] &}
1
2
3
4
6
3
8
9
10

9
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b Square of the diameter vs ring number

]

—~ 2
NE D nip /
£
o
3
3
5 (D
15
E
=
@]
n n+p >
Ring number
Graph |
Calculation:
2 _ N2
From graph l’ SIOPB = M
(n+p)=n
R= Slope
44
r Result:
Discussions:
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Experiment no 4:

.. Lo il 1 thod
Name of the Experiment: Determination of the refractive index of a liguid by pin me
using plane mirror and convex lens.

Theory:

A plano-concave liquid lens can be formed by the combination of a convex lens, a
few drops of liquid and a plane mirror. If F be the focal length of combined lenses
(convergent lens), then we have the relation

1_1.1

Fo¥ +-f:, ...... (n .
where f; and f; are the focal lengths of the convex lens and the liquid lens, respectively.
Correcting for the sign of /3 which is negative, we get

1_1_1

F T, T,

u P . |

t I F

Ff,
or,f,_-FT'rT ......... @)

The focal length of the plano-concave liquid lens is also given by relation
1 11
—=(k-1)-)
f; rr

where r’, r are the radii lower and upper surfaces of liquid lens respectively and g is the
refractive index of the liquid. Being a plane r =

1 1
—=(u—-1)=
3 (n=1) :
According to sign convention, both 7 and f; are negative. Thus,
r
=l+—... ... (3)
B

2
The value of ¢ can be found by using relations (2) and (3).

Since, the upper surface of this liquid lens has the same radius of curvature of the
convex lens it can be determined by using a spherometer.

Apparatus:

Convex lens, Plane mirror, Pin/pointer, Spherometer, Slide calipers, Stand & Clamp,
Experimental liquid, etc.

Brief Procedure:

1. Calculate the least count (mentioned in Exp. I) of the spherometer. ;
2. Place the spherometer on the plane mirror and slowly turn the screw so that the tips of
the central leg and the other three legs just touch the surface of the mirror. Note the
readings of the main scale and circular divisions of the spherometer. o
3. Now put a convex lens on the mirror and place the spherometer on the surface of the
~lens. Note the readings in the same manner of step 2. Then take the difference of 4
and B to calculate the height (4) of the central leg with respect to the tips of outer legs.

4. Slightly press the spherometer upon a piece of paper so that the three legs leave three
dots on the paper. Measure the distances (a1, az, a;) between these dots by a scale and
calculate the mean distance, a.

11
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. 2
Calculate the radius of curvature of the lens by using the relation, , = 2 4 g
6h

2
Calculate the vernier constant of the slide calipers.

Measure the thickness of the lens by using slide calipers,

Place a mirror on the base/table with its reflecting face upwards and put the lens on
the mirror. Clamp a pin horizontally on a vertical stand.

Find the position of the pin by moving it up or down so that there is no parallax
between the image of the tip of the pin and the tip of the pin itself.

10. Measure the distance between the pin and face of the lens at its middle by a meter

scale.

I'l. Caleulate the focal length of the convex lens.

12. Pour few drops of liquid between the convex lens and the plane mirror.

13. Repeat steps 9 and 10 and obtain the focal length of the combination of the lenses.
14. Calculate the focal length of the liquid lens.

15. Using the given formula, calculate the refractive index.

Experimental Data:

Vernier constant (V. C.) of the slide calipers
_Thevalue of one smallest division of the main scale
Total number of divisions in the vernier scale

V.C

Least Count (L.C.) of the spherometer
Pitch
Total number of divisions in the circular scale

LC=

Table-1: Table for the measurement of /&

. No. | Linear scale Circular Least count, Circular scale Total, = n.
Reg(l::mg of reading, x scale Le reading, y=L. xd | x +y rzz‘::;‘ h(B A
obs. {cm) Division, d (cm) (cm) (cm) o)
|
Plane 2
mirror, | 3 |
A [ a4 ]
[
[ ]
Lens [_2
surface, | 3
| 4
[ s ]

Measurement of ‘a’ i.e., the average distance among the legs of the spherometer:

a, +a
Mean value of @ = '_% = cm

. 2
Radius of curvature of the spherical surface, r = ll{ +

= cm I

=
N =

12
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Table-2: Table for the thickness of the lens

- - Instrumental | Corrected
No. | Linear | Vemier | Vemier Vemier scale | e ‘hr;na:“ n e thickness,
of scale scale constant, reading, t=x+y i : iy —(te)
obs. | reading.x | division, | Ve y=pxL ) (cm) (cm)
) (cm) B (cm) (cm) o
1
e
3
4
5
Table -3: Table for the focal Jen ths
2
[ Distance Focal length of Distance Focal tl;“g‘-h of ;oc;t_l le'f;gl‘h of
between the pin t = between the e e liquid lens,
I:;c;. and the face of e R ]ctns, M;an pin and the combination, M;‘an ¢ Ff'
the lens (without | f, =h += '\ | face of the lens o t 1T F_f
obs, the liguid), h, N (cm) (with the F=h,+ 3 (e !
(cm) (em) liquid), 4, (cm) (cm) (cm)
1
2
3
4
Calculation:
5
H=1+—
/i
Error Calculation:
Standard value of the refractive index of water is 1.33
p ; Standard value ~ Experimental value 100 %
ercentage error = X
c Standard value .

Result:

Discussions:

13
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Experiment no 5:

Name of the Experiment: Determination of the value of the acceleration due to gravity (g) by
nmieans of a compound pendulum.

Theory:

. A compound _pendulum is a rigid body of arbitrary shape which is capable of
oscillating about a horizontal axis passing through it. For small angles of swinging, its motion
is simple harmonic with a period given by

T=2r i
Vmgh

where [ is the pendulum’s rotational inertia about the pivot, m is the pendulum’s mass, and h
is the distance between the pivot and the pendulum’s centre of gravity as shown in Fig. 5.1.

Fig. 5.1: Compound Pendulum

A compound pendulum that oscillates from a suspension point (§) with period T (as
shown in Fig. 5.1) can be compared with a simple pendulum of length L with the same period
T L is called the equivalent length of the compound pendulum. The point along the
compound pendulum at a distance L from the suspension point is called the oscillation point
(Fig. 5.1). In a compound pendulum these two points are interchangeable.

Now using the time period expression of a simple pendulum,

T=27r\[—z—

g

ar, g=4;rz—2
T

The acceleration due to gravity (g) at the place of the experiment can be measured by finding
L and T graphically.

Apparatus:
A bar pendulum, Stop watch, Meter Scale, etc

14
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[iriel‘l’mcedure:

l. Label the ends of the compound pendulum bar as 4 and B.

2. Locate the centre of gravity (G) of the bar.

3. Measure the distance of holes (1, 2, 3,... and 9) from G for both sides.

4. Insert a metal wedge in the 1* hole at end 4 and place the wedge on the clamp so that
the bar can oscillate freely.

5. Oscillate the bar horizontally. Be careful not to make the amplitude of oscillation too

large. (Should be less than 5°)- Note the time for 20 complete oscillations. Calculate
the time period. ’

6. Do this process at different holes (2,3, ....and 9).
Repeat steps 3,4and 5 forend B,

A

Put the length measured towards the end A to the left and that measured toward the
end B to the right of the origin (see Graph 1). Draw a line parallel to the abscissa in

such a way that it intersects at four points of the two curves as shown in Graph 1.
Label these points as P, 0 Rand s, respectively.

9. Find out the equivalent length of the pendulum, £ and time period, T from the graph.
leration due to gravity using the given equation.

Experimental Data:

Table-1: Table for (he time period for end-4

Hole D;srlancc of the hole Time for 20 oscillations, Mean time, « ﬁlmc_pﬂ:(}d
Firy rom center of (5¢c.) P i
gravity (cm.) . op
|
] P
3 A T e 7
s 4
T | ST
5 |
7 = —_ ]
8
9 e | o
Table-2: Table for the time period for end-p
[
Hole DIS!ﬂnCC of the hole Time for 20 oscillations, Mean time, ¢ T pe?od
T from center of (52 (sec) T= o
gravity (cm.) e
l '——_-—“_‘
m 2 | -t ]
o 3
i} 4 R ]
5
6
- e —— e
8
[ I N
15
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Time period vs distance curves

b

Distance of holes from center of gravity (cm)

f—
[—.
End - A - End - B
(@]
g
£
P ol i R 5
\J \_—_/
0

_

Graph [
From graph 1: Length, PR= cm and length, 0S=  cm
Equivlalent length to the Simple Pendulum, L = _PR; 0s

Time period, T= sec

The value of acceleration due to gravity, g =4

Error Calculation:

TZ

Standard value of the acceleration due to gravity = 981 cmy/s?

Standard value ~ Experimental value

Percentage error =
Standard value
Result:
Discussions:
r
16
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Experiment no 6:

Name of the Experiment: Determination of the specific heat of a liquid by the method of
cooling
Theory:

Newton’s law of cooling can be used 1o determine the specific heat of a liquid by
observing the time taken by the liquid in cooling from one temperature to another.

Suppose a liquid of mass M, and specific heat §) is enclosed within a calorimeter of
mass m and specific heat s. The thermal capacity of the system is (M;S;+ms). If the
temperature of the liquid falls from 0110 0y in 1y, then the average rate of loss of heat is

0,-9
(MS; +ms) Rl )

(M, + ms) G102
2

where M; and S, are the mass and specific heat of the second liquid, respectively.

Since the conditions are similar, these two rates are equal

0,—0 0,—0
(MyS; + ms) __*__( : 7 2) = (M,S; + mg)-(—lt__Z)
1 2
or,
S = M, S5t + ms(t; —t,)
L=

Apparatus:

Double walled enclosure, Calorimeter, Thermometer, Heater, Stop walch, etc.
Brief Procedure:

L. Clean and dry the calorimeter and measure the mass (m) of the calorimeter and stirrer
" using a balance.

2. Pour water up to two-third volume of the calorimeter. Measure the total mass (m") of
the calorimeter, water and stirrer. Calculate the mass (M) of water,

3. Put the calorimeter on the heater and hold the thermometer bulb in the middle of the
water and raise the temperature around 62 °C. Keep the calorimeter into the double
walled enclosure with the help of a tongs. Close the lid and fjx the thermometer with
holder so that its bulb is in the middle of the water,

4. Start the stop watch when the temperature just falls to 60 °C. Note this temperature in
the table. Go on recording the temperature of water up to 20-25 minutes at an interval
of every one minute, Gently stir the water during the whole process.

5. Pour out the water from the calorimeter and wipe it dry. Take experimental liquid in
the calorimeter as the same volume of water. Repeat steps 2, 3 and 4 for liquid.

6. On a graph paper, plot curves (both for water and liquid) by taking temperature as
ordinate and time as abscissa (see Graph 1). Calculate #; and 1, from the graph.

7. Using the given formula, determine the specific heat of the given liquid.

17
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Exgerimental data:

Table: Time—temperature record

No. of obs. Time (min)

|

|

05

for water and liquid

Temperature of water Temperature of liquid
(°C) °Q

il

10 09

1]

Mass of the calorimeter + stirrer, m =

Mass of the calorimeter + stirrer +
Mass of the liquid, M; = m ' m =
Mass of the calorimeter + stirrer +
Mass of the water, M, = m "y =
Specific heat of the water, S, = 1.0
Specific heat of the material of the

liquid, m”’ =

water, m” =

R o3 oo o3 oo

0 Cal g °C"!
calorimeter (Aluminum), s = 0.2096 Cal g! =
(Copper), 5 = 0.0909 Cal g °C"!

Temperature vs time

)
2
i
g
& & Water |
Liquid
A R *W ‘
Time (min) '
Graph |
18
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Calculations:
Time taken by water to cool from 8, =  °C to 82 = °C as obtained from
the graph 1, 1, = min

Time taken by the liquid to cool from 0;= °Ctof= °Casobtained from
the graph 1, ¢, = min

Specific heat of the liquid,

MySt +ms(ty, — t,)
Sl =

Myt,

Error Calculation:

Standard value of the specific heat of turpentine is 0.42 Cal g'ec!

Standard value ~ Experimental value
Percentage error =
Standard value

x 100 %
Result:

Discussions:
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Experiment no 7-

Name of the Experiment: Determination of the value of the mechanical equivalent of heat (J)

by electrical method.

Theory:

The mechanical equivalent of heat J is the amount of electrical energy required to
generate one calorie of heat. If £ volt be the potential difference across a conducting coil
(Fig. 7.1) and i ampere be the current flowing through the coil for 1 seconds, then the
electrical energy in the coil is Eir. If this energy is converted into heat / (calories) then the
mechanical equivalent of heat J is

] =% Joules/Calorie "

If H is measured by means of a calorimeter with its contents where the temperature
raises from &, C to &, C then
H = (Ms + W)(8; - 6,), 2)

where M is the mass of the water in the calorimeter, s is the specific heat of water and IV’ is
the water equivalent of the calorimeter and stirrer. J¥ can be calculated from the mass and

specific heat of the calorimeter and stirrer.

From equations (1) and (2), we get

Eit

B les/Calori
(Ms + W)(8, - 8,) Joules/Calories

J

il )

Power Supply

+
Rh 2O

Fig. 7.1: Experimental setup for measuring the mechanical equivalent of heat

Apparatus:
Joule’s calorimeter set, Ammeter, Voltmeter, Stop-watch, Thermometer, Balance,
Power Supply, Rheostat, Key, etc. '

Brief Procedure:

1. Measure the mass (m,) of the calorimeter and stirrer using a balance.

20
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Experi

Pour water into the calorimeter which is just sufficient to dip the heating coil 3“‘? the
bulb of the thermometer. Then measure the total mass (m) of the calorimeter, stirrer
and water, Calculate the mass (M) of water.

Place the heating coil into the calorimeter. Keep the calorimeter with heating coil into
its insulating box, Fix the thermometer with holder so that its bulb is in the middle of
the water but never touching the coi] and the calorimeter,

Complete the circuit as shown in Fig, 7.1. Switch on the circuit temporarily and adjust
the control knob of the Power supply until the current is about 2 amperes. Then switch
off the circuit and stir the water unti] a steady temperature is shown by the
thermometer. Record this temperature as injtial temperature,

Switch on the circuit ang start the stop watch simultaneously. Then start recording the

ir the water gently during the whole process.
Find the maximum ang final temperatures, Use them to calculate the radiation
correction.

Calculate the water equivalent of the calorimeter,
Using the given formula, determine the value of the mechanical equivalent of heat.

mental data:

Mass of the calorimeter + stirrer, m; = g

Mass of the calorimeter + stirrer + water, m; = g

Mass of the water, M =m;—m, = g

Specific heat of the water, s = | Cal g" i

Specific heat of the material of the calorimeter (Aluminum), 51 =0.2096 Cal g °c"!

(Copper), s, = 0.0909 Cal g °c"!

Table 1: Table for current, voltage and temperature

No of Times Current, i Voltage, £ Temperature, T |
observations (min) ga;nE.! gVolQ (W)
1 00
2 0l
3 02
4 03
5 04
6 05
7 | 06
8 07
[ 9 08
[ 10 09
[ 11 10
Current Stopped
12 11 0 0
13 12 0 0
14 13 0 0
15 14 0 0
) 0 0
0 0
2] 20 0 0
21
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Calculations:
—<a2Xculations:
Water e

quivalent of the calorimeter, W=ms =

Initia] temperature of the calorimeter + contents, £, = E’C
Maximum temperature of the calorimeter + contents, 4, = °C
Final temperatyre of the calorimeter + contents, & = °C
Rise oflemperature, 0=(g, - 8) °C
Radiation correction, &£ = (6n-8jr2= °C
Corrected rise of temperature (& —8)=(6+ &)= °C
Time during which the current js passed, 1 = 00
Mean current during the interval Li= amp.
Mean voltage during the interval LE= volt

Mechanical equivalent of heat,
' = L Joules/Calories
I = TG, -0, °

Error Calculation:

Standard value of the mechanjcal equivalent of heat, J is 4.2 Joules/Calories

P Standard value ~ Experimental value
rcentage error =
creentag Standard value

X 100 %

Result:

Discussions:
Lliscussions:

22

4 . = e
T e S i S

Scanned by CamScanner




Fxperiment no 8:

- b
Name of the Experiment: Determination of the thermal conductivity of a bad conductor by
Lee's and Charlton’s method.,

Theory:

Constder a thin layer of slab of a bad conductor, S (such as glass or ebonite). A and B
are the thick dises of brass or copper, one on either side of S, & is a steam chamber from
which heat passes 10§ and A (Fig. 8.1). When
steamos passed through B, A4 1s warmed up by the HZI
heat conducted through §. After some time, a
steady state will be reached when the rate of flow

of heat through S equals the heat lost from A by
radiation and conduction,

If @) and @, be the temperatures of 2 and
A4 1n steady state, respectively, then the quantity

of hieat conducted per second through the slab § el
15
O] - Ka(0,-0,)

- .
where K15 the thermal conductivity of the slab §

and a and d are the area of cross-section and
thickness of S, respectively,

lf‘;—f be the rate of cooling of disc 4, the
heat lost (radiated) per second is

2 =ms —,

Fig. 8.1 : Lee's and Charlton’s apparatus
where 72 and s be the mass and specific heat of 4.

In the steady state, 0,=0;.

or, Ka(68,-6,) = d_q

d at

m:ﬁd
Or‘ il ————i‘_

a(6,~8;)
Apparatus:

Lee’s and Charlton’s apparatus, Slide calipers, Screw gauge, Thermometers, etc.

Bricf Procedure:

I. Measure the diameter of the bad conductor slab by using slide calipers.

2. Measure the thickness of the bad conductor slab by using screw gauge.

3. Stant heating the boiler apart from the bad conductor slab.

Put the slab between A4 and B.

When the steam starts 1o come from the outlet, start taking data from both the

thermometers Ty and T; after at an interval of every 5 minutes untij] they show steady

readings (4, and 0,). Steady readings mean that they remain constant for at Jeast 3

consecutive intervals, i. e. for 15 minutes.

6. After reaching the steady temperature ¢ in thermometer T3, remove B and then heat 4
with the slab still on the top of it up to (h+10) C.

Lh s
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Remov i : . : '
temper:tfr:nh th-e slab still on top of i from the heater and allow it (o cool. Note the
atan interva| of every half minute until the temperature falls (o (¢h-10)

8. y i
[Plot 2 graph of temperature vs. time from cooling data. Draw a tangent at steady
o ISamper?{rure (@2). Calculate the slope of the tangent.
- Determine the therinal conductivity of the bad conductor using the given formula,

Experimental Data;

Vernier Constant (¥, C.) of the slide calipers

Ve = The value of one smallest division of the main scale
T Total number of divisions in the vernier scale

Least Count (L.C.) of the Screw Gauge

_ Pitch
* Total number of divisions in the circular scale

LcC

Table-1: Table for the radius of the disc §

s : Vernier Instru- -
Mo | bsinsesss Vemier Vernier cals Wtasrmeter, .Mcan — Cprrcclcd Radius,
3 scale constant, : diameter, diameler, r=
of reading, x R reading, D=x+y error
division, V. - D D-(te) D/2
obs. (cm) y=V.xgp (cm) +e
0] (em) ern) (cm) fem) (cm) (cm)
|
2
3
4
Table-2: Table for the thickness of the disc S
Linear Circular | Least | Circular scale : Mean Instrumental | Corrected
No. . Thickness, o :
of scale scale count, reading, d=xt thickness, error thickness,
obs. | eading,x | division, L. y=PBxL, (em) Y d te d~(2e)
) (cm) p (cm) (em) (cm) (cm) (cm)
[ 11
[ 2 ] [
[ 3 | [
L4 ] [

Table-3: Time- temperature records of B and A.

DbsNe?\./;:?on Time (minutes) Temperature, &, (°C) Teiiperaure, Z5¢°C]
1 0 T
2 5
3 10
4. 15
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Table-4; Time-temperature record of 4 during its cooling.

No. of obs.

Time, f (minutes)

Temperature, (°C)

1 0 &t 10
—_—
2 0.5
3 )
4 1.5
& =10

Temperature (°C)

Temperature vs time

6> (Steady Temperature)

p R
Time (min) T e
Graph |
Calculations:
Mass of the disc A, m = g

Specific heat of the material of A, 5 =0.0909 Cal g °¢’!

Radius of the specimen disc S, r =

c<m

Area of cross-section, a= 7/ = u

'

cm

From the graph I, the slope of the tangentat§,= °C,

Scanned by CamScanner

do

dt

=—= °Cmin~! =

PQ
PR

'PQ
"PRx60

°C S-l
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Thermal conductivity,

db
B msmd .

" a6, —62)
Error Calculation:

The thermal conductivity of ebonite is 4.2x10™ cal em™ s oC”,

Standard value ~ Experimental value
x 100 %
Standard value

Percentage error =

Discussions:
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Experiment no 9: fective mass of a
. . ve

Name of the Experiment: Determination of the spring constant and effecti

given spiral spring,

Theory:

When a spiral spring clamped vertically at upper end 2 (Fig. 9.1) and SUbJeCte?ie[g
applied load, m, at its lower end, then the extension ! becomes proportional to the app
force i.e.

or,

k=¥ .............. ),

where £ is a constant of proportionality called spring constant.

k

e

s

=~
)

¥

0000000ne

v Vg]

Fig.9.1: Spring-mass system

The theoretical period of a system composed of a mass M oscillating at the end of a mass less
spring of force constant £ is given by,

M

T =2 |—
T %

[}

Since no spring is mass less, it would be more correct to use the equation

mMa+
T=2rm f—lk-’l

where my is the load and m, is the mass of the spring.

For a spring of length £ oscillating vertically (as shown in Fig. 9.1), the value of m, can be
derived from kinetic energy (E;) consideration as

’ k1
Ek =f —vzdm,
o 2
where v is the velocity of the infinitesimal mass dm.

Now, assuming homogeneous stretching and uniform mass distribution, dm = -?5 dy.
Let my and dm are moving with velocities vy and v, respectively, where v<v,.

27
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( A ey

P TR
» ¥ UBN b fepresented ty

llu&

where m ~3m‘
|

Apparatuy:

A spual spring, 1 os

Biries Procedure:

Measure the mass

ing the velocin as

the above Bualions

. 15 the eff

w lil‘\ ar ful'l\'ih'n ol the oSt

WV measwred from a fived pout

Ve

Evm (Pl am 1 t.a

. J-‘: 1’3 :d-"' 'EI?"'HJ;, Vidy
. T, i N ST
!.I'-‘:—"—|J,.sm|rw

ELUNVE s of the spring
4, Plectronic balange, S

wepwarch and meter scale, ete

im,) of the spring with & balance

2 Clamp the Bpng vertially by g hook stached 10 rigid frame

} Mea dre the Lot Cth ol the N wih 3 meter scale

4 AL 00 pin Loss i) o e free ond of the spring. Mcasure the lenpth of the spring
wath load Caliulate e eatens ¥iof the sprung

3 Oscillate the speing wathy 10 £ doat slong the vertical anis and record the time for
20 complete osotlations  Then valculate e Lime penod

O Repeat steps 4 and § for § 10 10 sty of iaads

T Draw a best it straght Line Urough ot wah Joad as abscissa and extension as
ordinate (Graph 1) Determune the slope of the hine and calculate the Spring constant k

8 Piot another graph with m. (3bscissa) aganst ¥ (ordinate) as shown in Graph 2. Find

oul the effective
IV

Fxpoerimental Data:

Table-1: Table for determining extensions and time periods
(e [ rl , 'ﬁ ’- —rl thofthe | & Mean Tmlti—](
¥ia " Ltfrih of Y LNETH O ¥ =~ ot 20
| i of | L | Spring without Spring with ? LE 1::;::4:“:“; Time, | Period, I‘r
; 4 o |’ T"" ; lui.-j‘l. h}.‘i’,l; E ': J: o ' 1»,-:’ (sect)
\ L ; {em) (cm) e~ (sed) (3¢
| SIS 0TI N U DS SO (U SN SN S
5 727 a0 ] ——tee L
| {37 ] NS RSN, A R | ne WS T
] wn e el
{5 BOSR: ES  S U SR S
- & —— N— -
(6 | wn_ AR S - T N RN
t -7_" T0n0 SN D (A —
L S,
e S R i s M N
L 9 | 900 i '"j SN R SR . ! N S
Lﬁj,l"{“‘u_,; s r————— i i Rt i sne R iy ]
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1
B ! .
Extension vs Load i Square of the tume period vs Load
' 1) i
1 ;: i \ ! P
| - \ 1 ! i g
] g ! r i e
| | i -
| & / ] ) |
| = s
| o ey el |
! ) ’.f
| L/ |
i ) W -+ - . — B . o
i 1 Load m, ig) { | m 0 Load m, (p)
e - -l s g 5P e eperemans]
Ciraph- 1 Giraph-2
Calculations:
From graph-1, Slope = -~ = - o
" J
SPring constamt, k= g - = 9§ » dynes’cm
i Sl
From graph-2, the effective mass of the spring, m'’ = g
Error Calculation
~ . m
Standard value of the effective mass of the spring © ==,

P : Standard value ~ Experimental value
ercenlage error =

X 100 6
Standard value !

Results:

Discussions:
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