c
0)]
=

HYTINNVHSHY >

¥ TECHNOLOGY

s

ny. 1995
Vens, 4
,7)'07:6

/
%
«

Ahsanullah University of Science and Technology
Department of Electrical and Electronic Engineering

LABORATORY MANUAL
FOR
ELECTRICAL AND ELECTRONIC SESSIONAL COURSES

Student Name :
Student ID :

CourseNo. : EEE 4232
Course Title VLSI Il Lab.

For the students of
Department of Electrical and Electronic Engineering
4™ Year2" Semester

EEE 4232 VLSI Il Laboratory

Table of Contents

LalB0: Overview Of VLB LabOratory.......ueueeeieiiiiiiiieiieeeeee e e e e e e e e 1
Lab1: Introduction to Verilog HDL Programming............ccoooiiiiiiiiiiiiiiiiiiieiieeeee e eer e e e e e e aaeaaa e 6
Lab2: Introduction to Functional Verification Using Verilog Testbench................cccoooiiieeeennnns 32
Labk3: Modeling Sequential Systems and Finite State Machine Using Verilog.HDL..................... 49
Lab4: Introduction t0 UNIX SNELL.......cooiiiiiii e 61
Lab5: Synthesis using Genus Synthesis SOIULION...............oooori i 69
Lab6: Physical Design Using Encounter Digital Implementation System (Part1)........ccccccceeeunee 77
Lab7A: Physical Design Using Encounter Digital Implementation System (Part.2)................... 100
Lab7B: Static Timing Analysis Using Encounter Digital Implementation System................c...... 114

Lab8: Physical dication and Power Analysis Using Encounter Digital Implementation Systert24

References and ACKNOWIEAGIMENL...........ooiiiiiiiiiiiie e e e 133

LabO: Overview of VL-8ILaloratory
Objective

The main objectives of this lab are:

1 Familiarizatiorwith Application Specific Integrated CircuitsS|¢designflow.
1 Overview of the VLSI lab.

Introduction

To desigrnvery largescaleintegratedcircuitssome frontend and backend processes needed to

be acomplished. The processes can be represented as a flow chart to show the life cycle of a chip
whichis called Application Specific Integrated Circuits (ASIC) design flow. A typical ASIC design
flow is showrbelow.

System Specification

v

Architectural Design

Design Import & Timing Mode Setup

Design Implementation

Floorplanning

¥

Creating Power Mesh

v

<

Functional Verification

o

Logic S*ymhesis ’ | Cell Placement and PreCTS optimization ‘
: : Automatic Place v

PhysmciDemgn and Route | Clock Tree Synthesis and PostCTS opt ‘

| Veriﬁcc“b;& Signoff | Routing and Post Routing Optimization
F b . 1. .o. .
? r;“ on Metal and Standard Cell Fil
Packaging & Testing *
¥ K Physical Verification
Chip

Figure: ASIC design flow

Pagel of 133

System Specification
Design functionality, performance factors (speed, power, latency, throughput, dimer
data size), cost, I/O requirements etc are clearly stated at this stage.

Architectural Design

Determines required differerdrchitectureblocksto implement the design to maximize tr
performance factors. It alsoeterminesthe algorithm for optimized connectionof the
blocksandformal verification is performed.

Designimplementation

The systentan be designed in two wayanalog design and digital design. In the ane
design process, circuit blocks are designed at the transistor level. On the other har
synthesizable RTL description of the device is programmet) udardware Descriptiol
Language (HDL) in the digital design procd&d.Programmingcan be easily implemente
for any modern complex devicas it gives the advantage of simulating and verifying
design output and functionality efficiently

Functiond Verification and Testing

Functional simulation is performad this stageand the logic of the system is verified usi
timing simulation and test vectore. ¥ G KS Fdzy Ol A2yl f A& R2
be designed again

Logic Synthesis

The pocess of translatinthe RTlinto agate-level netlistis called Synthesis. In this proce
the design is optimized, an@t¢hnology mapping or library binding done. The gatéevel
netlist must undergo formal verification to prove that RTL and netfisteguivalent.

Physical Design

Physical Design is the process of transforming a circuit description into a physical layc
describes the position of cells and routes for the interconnections between tHéra.
physicaldesignconsistsof the following steps.

Design Import & Timing Mode Setup
Floorplanning

Creating Power Mesh

Cell Placement and PreCTS optimization
Clock Tree Synthesis and PostCTS opt
Routing andPostRoutingOptimization
Metal and Standard Cell Fill

T3> D > > D >

Page2 of 133

Verification andSignoff

Verification would either be just before the tapeout stage of the chip or the stage w
design is again taken back through the same flow for optimization. The follc
verifications are usually performed in this stage.

A Design Rule CheddRC)1t checks design rules such as shapes/size/spacing
many other complex rules of each metal layer.

A Layout vs Schematic (LV®)checks whether the design layout is equivalent to
schematic.

A Antenna Rule Check (AR@hecks for a large area wifetals that might affect the
manufacturing process.

A Electrical Rule Check (ERThe methodology used to check the robustness ¢
design both at schematic and layout levels against various electronic design rt

After all verificationspost-processings applied where the physical layout data is transla
into an industrystandard format calledsDSII The GDSII file is sent to the semiconduc
foundry to convert it into mask data which is calteggeout. GDS Il is a database file formr
that isthe industry standard for data exchange of integrated circuit or IC layout artwo
is a binary file fanat representing planar geometric shapes, text labels, and o
information about the layout in hierarchical form. It is also referred as Graphic D
System.

Fabrication

The mask of physical design is sent to factories called fabs(clean r8@rajd masks are
used in turn, each one reproducing a layer of the completed design Masks are used to
a specific patterrof each material in a sequential manner and create a complex patte
several layers Introduction

For fabricating an IC in the cleaoom following steps are performed.

A Wafer Preparation

Oxidation

Lithography (Photoresist & Masking)

Etching

Dopant Incorporation (Diffusion & lon Implantation)

Crystal Epitaxial Growth

Deposition

Isolation

Cleaning

D D D D >

Packaging & Testing
After fabricating the chip in a clean room, it should pass some specific tests b
commercial use. If all test is confirmed it is packaged and sent toothseume.

Chip

The final output of the process achip.

Page3 of 133

EDA Files
Liberty Timing File (.lilbile)

ASCII representation of the timing and power parameters associated with any cell in particular
semiconductor technology. Types of lib file Fast lib, Slow lib, and Typical lib. Basic differences
among those libraries are Nominal voltage Nominal terapére cell leakage Power Capacitance,

Fall power, Rise power, and Timing.

Library Exchange Format (.lef file)

LEF is a specification file for representing the physical layout of an IC in an ASCII format. It contains
library information for a class of desig} It mainly contains Layer information, Via information,
Placement site type and origin, and Macrocell definitions.

SDC (Standard Design Constraint)

The Standard Design Constraint format is used to specify the design intent, including the timing,
powerand area constraints for a design.

Cap table

Cap table contains information of parasitic Resistance and Capacitance which is used to model
the interconnect of a design.

Cdb (Celtic Database)

For signal integrity analysis besides lib files, the tool reguihe .cdb files also. The main issues
of concern for signal integrity are Ringing, Crosstalk, Ground bounce, Distortion, Signal loss,
Power supply noise.

Commonly used EDA Tools

Function Tools
Analog Design Cadence Virtuoso, HSPice, LTSpice
CellLayout Design Cadence Virtuoso Layout Suit
RTL Coding Cadence NCSim, ModelSim, Quartus
Synthesis Cadence Genuy¥osys Open Synthesis Suitg
Physical System Design and STA Cadence Encounter, Innovus
Verification Cadence Assura, Mentor grapl@alibre

Paged of 133

Probable List of Lab Tasks

The followingprocesses of VLSI ASIC design flow will be covered in the upcoming classes.

Front End Process

A Verilog HDIprogramming language.

A Functional Verification using Verilog Testbench.
A ModelingSequential Systems and F&8ng Verilog.
A Synthesis

Backend Process

A Physical Design
A Static Timing Analysis
A Physical Verification and Power Analysis

Assessment Procedure and Marks Distribution (Tentative)

Assessment Type Percentage
i) Continuous Performance 10
i) Lab Testl 20
iii) Lab Tes@ 25
iv) Assignment 15
V) Project 30
Total 100

Page5 of 133

Lab1: Introduction to Verilog HDL Programming

Objective
The main objectives of this lab are:

1 Basic terminology of Verilog HDL programming.
1 Familiarization with different levels of Abstraction in Verilog HDL.
! Simulating Verilog HDIsingModelSim

Introduction

A system or chip can be designed in tways: analog design and digital design. In the analog
design process, circuit blocks are designed at the transistor level. Nowadays high performing
chips are designed with more smarter functioasd that has increasedhe density of the
transistor in a clp. In VLSI (Very Largeale Integration) technology chips are designed with
more than 100,000 transistors. So it is not easy to design and geifya complegystem in an

analog process. In the digital design process, according to the functionality aifip, a
synthesizable RTL description of the system is modeled using the Hardware Description Language
(HDL). HDL gives the advantage of simulating and verifying the design output and functionality
easily before they were fabricated on chips. For a lomg, programming languages such as
FORTRAN, Pascal, and C were used to describe sequential computer programs after that
Hardware Description Languages (HDLs) came into existence to model the concurrency processes
found in hardware elementsSome common HLs are Verilog, System Verilog, VHDL, VerilogA.

Verilog Module

Modules are the building blocks of the Verilog design. Modules can be embedded within other
modules, and a higher level module can communicate with its ldexexl modules using their
input ard output ports. A module should be enclosed within a moduleemdimodulekeywords.

The following figure shows the structure of any Verilog module.

module module_name [(port_name{, port_name })];
[parameter declarations]
[input declarations]
[output declarations]
[imout declarations]
[wire or tri declarations]
[reg or integer declarations]
[function or task declarations]
[assign continuous assignments|
[initial block]
[always blocks]
[gate instantiations]
[module instantiations|
endmodule

Page6 of 133

Port Types

Port provides the interface by which a module can communicate with the internaésisinal
environment. Based on the direction of the signal Verilog language allows three types of ports.
Ports can be declared as follows.

Type of Port Verilog Keyword
Input port input
Output port output
Bidirectional port inout

Data Types

Verilog language has two primary data types called Nets and Registers.

1. Nets
1 Represents structural connections between components.
T 550t NBR Fa WgANBEQ®
1 By default, one bit.
1 All port declaration are implicitly declared as wire in Verilog
2. Registers
1 Represens the variables used to store data.
T 550t NBR Fa WNBEIQO®
1 Stores/holds the last assigned value until it is changed.
1 Must use register data type if a signal is assigned in procedural

In Verilogé LJ- NJ- YisuBef tédeclareconstants and does not belong to any other data type such as reg
or net data types. A constant expression refers to a constant number or previously defined parameter. We
modify parameter values at runtime, but we can modify a parameter vasirguthed R S F LJIstatémeéri. In
Y2 RSNY wclpcalgaréng A A dii SR (12 RSOf I NB O2yaidlydao

Port Connection Rule
Verilog simulator shows violations if port connection rules are violated.

DUT Block

I wire

inoutI wire

reg or wire | jnput Design Block Output wire

DUT Block wire wire orreg| DUT Block

Page7 of 133

Input
1 Internal input ports must always beet (wire) type.
1 External input ports can be connectedrg or net type.

Output
1 Internal output ports can be eitheegor net type.
1 External outputs must beet type.

Inouts
1 Internally and externally inout ports must et type.
1 They are bidirectional.egower, ground, etc.

Width Matching
It is legal to connect internal and external items of different sizes vitie@n-module port
connections. However, a warning is typically issued that the width does not match.

Unconnected Ports

Verilog allows ports to remain unconnected. For example, a full adder module has three
inputs (A, B, C) and two outputs (sum, carryESoA ¥ ¢S R2y Qi gl yid (2
or outputs during the submodule call, we simply ignore that by keeping the place blank.
Example if a module is full_add(A, B, C, SUM, Carry) during the submodule call if we want
to ignore the C input can write dsll_add al(x,y, ,z,l)

Literals

Literals are used for representing constant numbers. The syntax for a constant is shown below.

FraAl SpPQ fraA3dyprolasSp ryd

d

F ¢KS ydzyoSN *Indicates if the number is| | *Radix of the number. Numbe_r
oAlG&a GKS ydzy | signed *Binary: b or B according to
O2YLINAASR 27 *Either s or S. *Qctal: o or O base.
F58Fl dzA G Aa *Not case sensitive. *Hexadecimal: h or H

*Default is unsigned *Decimal: d or D

*Not case sensitive.
*Default is decimal.

PageB of 133

.

Example 01

The following example demonstrates the Verilog syntax for different literals and data types.

1 | parametera,b,c,de,f,g,h // declaration of multiple variableof parameter type
2 | reg [7:0]i; Il reg type variable declaration which can store up tbiB
3 | reg[7:0]j; I reg type variabledeclaration which can store up telfi
4 | a=549; /I decimal number549, no size specified
5/6'nQO6ET /14 -bit unknow value Xxxx

6|0Ory QKFET //8-bit number equivalent to 8b1111_xxx

7/dr WKy CCT /I hex number, no size specified

8lel pQRO T /1 5-bit decimal number 00011

9|ff'y Q6 nnnnt//8bit binary number 00001011

10({gfyQonnnn kKK & paratodused to @nfrove the readability ®bit number 00001011
11| hr'y Qd:mn mm //8bit binary number 00001011

121i=n Q& o;mn mm // 4-bit positive signed number 00001011

13|j=-n Qa o;mn m /linitializes with 1011 then for negtive sign2s compement is performed which
is0101 thend zerosare paddedor signed value 00000101

Example 01 is not a complete Verilog Module it just demonstrates the sy

Verilog Operators

To represent the functionality of a digital system different operators such as logical, bitwise, etc.
operators must beused. In the following table, different Verilog operators are shown.

Table demonstrating different operators

{} concatenation ~ bit-wise NOT

A arithmetic & bit-wise AND

o modulus | bit-wise OR

> >= < <= relational : bit-wise XOR

| logical NOT A~ ~t bit-wise XNOR

& logical AND & reduction AND

I logical OR | reduction OR
~& reduction NAND

- logical equality ~| reduction NOR

1= logical inequality A reduction XOR

=== case equality ~A A~ reduction XNOR

b= case inequality << shift left

g i conditional >> shift right

Paged of 133

Example 02

The following example demonstrates the basic logical syntax of basic logical operation used in
digital system representation. We can represent the logical expressions in two waysGalied

Instantiationsand Continuous Assignment.

module gatesf,B,Yn,Ya,Yo0,YX, Zn,Za,ZQ;,Zx
/I Gate Instantiations
output Yh,Ya,Yo,YX
input A, B;

not g1(Yh,A);
andg2(Ya,A,B);
org3(Yo,A,B);

xor g4(Yx,A,B);

9 | // Continuous Assignment
10 | output Zn,Za,Zo,Zx

11 | assigriZr=~A,

12 | assigrza=A&B;

13 | assignZo=A|B;

14 | assignZx=A"B;

15 | endmodule

oO~NO OIS WN PR

Verilog Modeling Styles

Digital systems are generally modeledanir ways calledSwitchtlevel modeling Gate level or
structural modeling, Data flow modeling (DFMand Behavioral modeling

AYyFLaGAaz2y 27F HU &6 EC ta226A AIHOSH
l.:.I

oWy |
'y 39y SHHISEBS i FNRY we¢[o

O(U

1. Switch level Modeling

This method povides mechanisms for modelingOS transistors using Verilog. This
modeling style is used in very specific cases, for designing leaf cells in a hierarchical design.

Switchlevel modeling is not detailed enough to catch many ofhablems.

PagelOof 133

Example @

The following example demonstrates the Verilog HDL code &M@ Snverter using the switch
level abstraction.

vdd

4

—

gnd

CMOS Inverter

moduleinv_cmogin,Y);
input in;

output Y;

supplyl vdd;

supplyO gnd;

pmos p1(Y,vdd,in);
nmos n1(Y,gnd,in);
endmodule

coO~NO U WNPRF

2. Gate level or structural modeling

In this method, a system is designed using predefined gates or-desered
primitives. It is white box modeling because every design is visible inside the design.
It is the lower level of abstraction.

Pagellof 133

Example @

The following example demonstrates the Verilog HDL code of a two to one multiplexer module
using the gate level abstraction.
1|/~
2 | Steps for Gate Levilodeling
3| I. Develop the Boolean function of output
4 | 1l.Draw the logic diagram.
5 | lll.Connect the gates with nets(wires).
6
7
8

*/
module mux_2to1(s,lo,I1,Y);
input s,lo,11;
9 | output Y;
10 | wire wl,w2,w3;
11| not (wl,s);
12 | and (w2,lo,wl);
13 | and (w3,s,I1);
14| or (Y,w2,w3);
15 | endmodule

3. Dataflow modeling (DFM)

In this method, a system is designed by specifying the data flow between input and
output. It uses continuous assignment statements to drive a value on a net or wire. It
is a higher level of abstraction than the gate level. It may tteeeblackbox modeling

or white-box modeling depending on the design complexity.

Example G

The following example demonstrates the Verilog HDL code of a two to one multiplexer module

using the data flow modeling.
11/~

2 | Steps foiData Flow Modeling

3 | 1.Obtain the relation between output and input.

ALLOPLYLI £ SYSylG GKS f23A0FE NBfIFIGAZY dzaay3

51%*

6

7

8

module mux_2tol(s,lo,I1,Y);
input s,lo,I1;
output Y;
9 | wire wl,w2,w3;
10 | assign wl=~s;
11 | assign w2=lo & wi;
12 | assign w3=s &1;
13 | assign Y=w2 | w3;
14 | endmodule

Pagel2of 133

4.

Behavioral modeling

In this method, a system is designed and implemented in terms of a design algorithm
based on the behavior of the design and its performance. Verilog behavioral code
must be inside procedural statements/blocks only. It is the highest level of

abstraction.It is also known as bladsox modeling.

Procedural Block

There are two types of procedural blocks in Verilog catied y A and & If & ¢ Ibldcksé

t NPOSRdAzNF £ o6f 2014 FINB S@lFfdz 6SR Ay GKS 2NRSNJ ;
known as sequential statements. Procedural statements assign values to reg, integer, real or time
variables. Procedural blocks cannot assign valoe®ts.

AGAYAGALIEE . 207

1 Statements inside the initial block are executed only once.
1 Executes at time zero.
1 Used in Test bench

byalfaleaaég . f20]
1 Sensitivity list or list of signals that directly affect the output result must be

defined in alwayslock.

1 Whenever the value of a signal in the sensitivity list changes then the statements

inside the always block is executed.

always@ (sensitivity_list)
begin
[procedural assignment statement]
[if-elsestatement]
[casestatement]
[while, repeatandfor loops]
[task andfunction calls]
end

Example @

The following example demonstrates the Verilog HDL code of a two to one multiplexer module
using the behavioral modeling style. The always procedural bladets here to set the output
of multiplexer(y) whenever any of the inputs (Io and 11) or selection input (s) changes.

1
2
3

/*
Steps for Behavioral Modeling
L®5S@St 2L I 06 SKI OpkoBraiming)l £ 32 NA (1 KY

6t A1S W/

Pagel3of 133

4 | 1l.According to the algorithm insert the behavioral statements inside the appropriate procedy
5| block
6| *
7 | module mux_2tol(s,lo,I1,Y);
8 | input s,lo,11;
9 | output reg Y;
10 | always@ (s,lo,l1)yif we use always@* The * operator will automatically identify all sensitive variabl

11 | begin

12 if(s==0)

13 Y=lo;
14 else

15 Y=I1;
16| end

17 | endmodule

Hierarchical Modeling

A Hierarchical methodology is used to design simple components to construct more complex
components There are two design approaches when writing code in a hierarchical style called
Top-Down and Bottom-Up methodology. Typically, designers use these two apphes sidéy-

side to construct complex circuits.

1. TopDown Methodology
In a topdown design methodology, we define the tégvel block and identify the sub
blocks necessary to build the tdpvel block. We further subdivide the stocks until
we come b leaf cells, which are the cells that cannot further be divided.

Top-level block

Sub-block 1 Sub-block 2 Sub-block 3 Sub-block 4

Leaf
cell

Leaf
cell

Leaf
cell

Leaf
cell

Leaf
cell

Leaf
cell

Leaf Leaf
cell cell

Figure: Block representation ®6p-Down methodology

Pagel4of 133

2. Bottom-Up Methodology
In a bottomup design methodology, we first identify the building blocks that are available
to us. Webuild bigger cells, using these building blocks. These cells are then used for
higherlevel blocks until we build the televel block in the design.

Top-level block

AARR

Figure:Block representation dottom-Up methodology

Example G

The following example demonstrates théerilog HDL code of a full adder following the
Hierarchical Modelingtyle. In the design, the half adder is constructed from the predefined logic
gates and then the half adder instance is used twice to design the full adder. This creates two
instances irthe same module.

module Full_Adder(A,B,Cin,sum,carry);op module
input A,B,Cin;

output sum,carry;

wire s1,cl,c2;

Half_Adder sm1(s1,c1,A,B);

Half _Adder sm2(sum,c2,s1,Cin);

or ol(carry,cl,c2);

endmodule

O O~NOO O, WNPE

10 | module Half_Adder(s,c,x,y}i macro cell

11| input Xx,y;

12 | output s,c;

13 | xor s1(s,x,y);// predefined primitive or leaf cells
14 | and cl(c,x.y);

15 | endmodule

N.B.One module calbe instantiatedto anothermodule without maintaining th&/O sequence
using theNamelyWiseInstantiation method (.currentmodule_variabksubmodule_variablg.

Pagel5of 133

Blocking and NofBlocking Assignment

Blocking(=) and nonblocking (<=) assignments are provided to control the execution order
within an always block. All the previous examples of combinational circuits used blocking
assignments. But if the subsequent assignments depend on the results of preceding assignments
non-blocking asignments needed to be used. The following examples demonstrates the use of
blocking and non blocking assignments.

Example @

In the following example, we have tried to design a shift register module nasiiéid regusing
the blocking assignment.

module shift_reg(clock,W,Q);
input clock,W;
output reg[3:0]Q;
always@ (posedge clock)
begin
QBI=w;
Q[2]=Q3];
Q[11=QZ];
Q[0]=Q[1];
end
endmodule

PO OWO~NOO O, WNEPE

el

Now let us try to realize the output of Example 07 for that let us consider Initially Q=0000 and
W=1. Now for the first two positive edges of the clock, the output will be following.

Output
/[After the first positive edge of the clock
Q[BI=w=1
Q[2]=Q[3]=1
Q[1]=Q[2]-1
Q[0]=Q[1]=1
/[After the secondpositive edge of the clock
Q[B]:W:l
Q[2]=QI[3]=1
Q[1]=Q[2]~1
Q[0]=Q[1]=1

Now from the output, we can notice that the output is always the same. For a shift registrar, we
know that the output wil propagate biwise sensing each clock trigger but in the design of

Example 8 that is absent due to the use of blocking assignment as the variable update is
executed in the order they are coded. It should be noted that the blocking assignment blocks the

Pagel6 of 133

execution of the next statement till the current statement is executed. So, it can be said that
blocking assignment is useful for combinational circuits

Example O

In the following example, we have modified thleift_regmodule of Example®by replacing
the blockingl & a A 3y Y Sighiblockingli & &

module shift_reg(clock,W,Q);

input clock,W;

output reg[3:0]Q;

always@ (posedge clock)

begin
Q[3l=w;
Q[2=d3];
Q1=d2];
QIOK=QI[1];

end

endmodule

PO OWoOO~NOOITD, WN P

el

Now let us try to realize the output of Exampl® for that let us consider Initially Q=0000 and
W=1. Now for the first two positive edges of the clock, the output will be following.

Output
/[After the first positive edge of the clock
Q[BI=w=1
Q[2]=Q[3]=0
Q[1]=Q[2]=0
Q[0]=Q[1]=0
[[After the secondpositive edge of the clock
QBIFWH
Q[2]=Q[3]4
Q[1]=Q[2]®
Q[0]=Q[1]=0

Now from the output, we can notice that the output is propagatingvise by sensing each clock
trigger after using the blocking assignment as the variable upplateess is executed in parallel.

In this code execution of the next statement is not blocked due to the execution of the current
statement. This method is useful for modeling sequential circuits and generating concurrent
statements.

There are three types bassignments in Verilogontinuous (assigr), blocking (=), andnon
blocking(<=)

Pagel7of 133

Example 10

The following example demonstrates the Verilog HDL code of a D Latch

module D_FF(clock,D,Q);
input clock,D;
output reg Q;
always@(*)
if(clock)
Q<=D;
endmodule

NOoO o~ WNRE

Examplell

The following example demonstrates the Verilog HDL code of a-floflipA D flipflop is a 1bit
data storage device that saves eh# data depending on its input D and clock pulse. When a
clock edged triggered, whatever input is present in D goes to the output Q.

module D_FF(clock,D,Q);

input clock,D;

output reg Q;

always@ (posedge clock)
Q<=D;

endmodule

O U, WN PR

Example 12

The following example demonstrates the Verilog HDL code of a 4 to 2 priority encoder with a

valid bit. In the example, theasexstatement is used. In Verilog, there are three types of
variations in case. Thmase casexandcasezll do bitwise comparisons between the
selectingcase expressioand individuakase item statementdn the casestatement, the values

X or zin an alternative are checked for an exact match with the same values in the controlling
expression. On the other handasexigy 2 NSa Fye& oAl LIR2AAGATRe 02yl

casezstatement2 Yy f @ A Iy 2NBaA o60Al0 LkRaiAdAizya 6AGK | Wl Qo
1 | module p_encoder_4to2(D,Y,V);
2 | input [3:0]D; /ldeclaring variable for input
3 | output reg [1:0]Y; //declaring variable for output
4 | output reg V; /ldeclaring the variable for valid bit
5| always@ *
6 | begin
7 casex(D)
8 4'b0001:
9 begin
10 Y=2'b00; V=1;

Pagel8of 133

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

end
4'b001x:
begin
Y=2'b01; V=1;
end
4'b01xx:
begin
Y=2'b10; V=1;
end
4'H1xxX:
begin
Y=2'b11; V=1;
end
default:
begin
Y=2'bx; V=0;
end
endcase
end
endmodule

Pagel9of 133

Simulating Verilog HDL

1. Find the following icon ogour PC and doublelick on the icon to run the software.
(Search:ModelSim- Intel FPGA Starter Edition Model Technology Model8itel FPGA
Edition vsim 2020.1 (Quartus Prime 20.1))

2. The following window will pop up.
ﬁ ModelSim - INTEL FPGA STARTER EDITION 2020.1 - [} x
File Edit View Compile Simulste Add Library Tools Layout Bookmarks Window Help
B-sHSE i@ | 0-AE N S2aamn ‘ ¢ A - Lavout [ioDesign - ‘ Colsmiayout [ALLColumns -

CER 0 .5 : 1) ad | Be
A Lorary o

¥ Hame: Tyoe

o i) work wary

s+l 220model ary

ol 220model_ver ary

EEEEEEEEERERERR

O] |

Yl | searchFor = r @ Wi

+ &

x
te/20.1/modelsim_ase/win3Zaloem/../modelaim.ini

Onsto 1us <No Design Loaded > <No Context>

3. ExecuteCA f S b b S ¢ThdByeateNFRoR&vddow will appear.

ﬁ ModelSim - INTEL FPGA STARTER EDITION 2020.1
File Edit View Compile Simulate Add Library Tools Lz

I New | Folder M E
Open... L
Load > Project... < B by
Close Library... =
Import Lg Debug Archive.. =—i|-'

Repaol

Change Directory...

4. In the Create Projectwindow change theProject Locationto your directory (e.g.
D:/150205022/Lak./Full_Adder) and give a name in tReoject Name field. After that
click on theOKbutton.

[Project name must be same as the top module]

Page200f 133

M Create Project X

Project Name
Full_Added

Project Location
D:/150205022/Lab-1/Full_Adder Browse...

Default Library Name
work
—Copy Settings From
modelsim ase/modelsim.ini Browse...

%' Copy Library Mappings (" Reference Library Mappings

OK Cancel |

TheAdd items to the Projectvindow will appear Select theCrete New Fildutton.

M Add items to the Project >
Click on the icon to add items of that type:

) R

Create New File Add Existing File

M 3

Create Simulation Create New Folder

Close

In the Create Project Filevindow fill up theFile Namefield which must be identical to
the project name and top module name. Also, select Verilog fromAitie file as type
dropdown menu. And ten clicRKbutton.

M Create Project File >
File Name
Full Addex] Browse...
—Add fleastype———————— [Folder
[Verilog -l [Top Level -l

o ICancel|

Page21of 133

7. TheAdd items to the Projectvindow will appear agairClick on theClosebutton.

M

8. Now the ModelSim window will look like the following figure.

Click on the icon to add items of that type:

]]

Create New File Add Existing File

™M 4

Create Simulation Create New Folder

I Close

Page22of 133

