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Lab-0: Overview of VLSI-II Laboratory 
Objective 

The main objectives of this lab are: 

¶ Familiarization with Application Specific Integrated Circuits (ASIC) design flow. 

¶ Overview of the VLSI-II lab. 

Introduction 

To design very large-scale integrated circuits some frontend and backend processes needed to 

be acomplished. The processes can be represented as a flow chart to show the life cycle of a chip 

which is called Application Specific Integrated Circuits (ASIC) design flow. A typical ASIC design 

flow is shown below. 

 

 

 

Figure: ASIC design flow 
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System Specification 
Design functionality, performance factors (speed, power, latency, throughput, dimension, 
data size), cost, I/O requirements etc are clearly stated at this stage. 
 

Architectural Design 
Determines required different architecture blocks to implement the design to maximize the 
performance factors. It also determines the algorithm for optimized connection of the 
blocks and formal verification is performed.  
 

Design Implementation 
The system can be designed in two ways: analog design and digital design. In the analog 
design process, circuit blocks are designed at the transistor level. On the other hand, the 
synthesizable RTL description of the device is programmed using Hardware Description 
Language (HDL) in the digital design process. HDL Programming can be easily implemented 
for any modern complex device as it gives the advantage of simulating and verifying the 
design output and functionality efficiently. 
 

Functional Verification and Testing 
Functional simulation is performed in this stage, and the logic of the system is verified using 
timing simulation and test vectors. LŦ ǘƘŜ ŦǳƴŎǘƛƻƴŀƭƛǘȅ ŘƻŜǎƴΩǘ ƳŀǘŎƘ ǘƘŜ CǳƴŎǘƛƻƴ ǎƘƻǳƭŘ 
be designed again 
 

Logic Synthesis 
The process of translating the RTL into a gate-level netlist is called Synthesis. In this process, 
the design is optimized, and technology mapping or library binding is done. The gate-level 
netlist must undergo formal verification to prove that RTL and netlist are equivalent. 
 

Physical Design 
Physical Design is the process of transforming a circuit description into a physical layout that 
describes the position of cells and routes for the interconnections between them. The 
physical design consists of the following steps. 
 
Á Design Import & Timing Mode Setup 
Á Floorplanning 
Á Creating Power Mesh 
Á Cell Placement and PreCTS optimization 
Á Clock Tree Synthesis and PostCTS opt 
Á Routing and Post-Routing Optimization 
Á Metal and Standard Cell Fill 
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Verification and Signoff 
Verification would either be just before the tapeout stage of the chip or the stage where 
design is again taken back through the same flow for optimization. The following 
verifications are usually performed in this stage. 
  
Á Design Rule Check (DRC): It checks design rules such as shapes/size/spacing and 

many other complex rules of each metal layer. 
Á Layout vs Schematic (LVS): It checks whether the design layout is equivalent to its 

schematic. 
Á Antenna Rule Check (ARC): Checks for a large area of metals that might affect the 

manufacturing process. 
Á Electrical Rule Check (ERC): The methodology used to check the robustness of a 

design both at schematic and layout levels against various electronic design rules. 
 

After all verifications, post-processing is applied where the physical layout data is translated 
into an industry-standard format called GDSII. The GDSII file is sent to the semiconductor 
foundry to convert it into mask data which is called tapeout. GDS II is a database file format 
that is the industry standard for data exchange of integrated circuit or IC layout artwork. It 
is a binary file format representing planar geometric shapes, text labels, and other 
information about the layout in hierarchical form. It is also referred as Graphic Design 
System. 
 

Fabrication 
The mask of physical design is sent to factories called fabs(clean room). Several masks are 
used in turn, each one reproducing a layer of the completed design Masks are used to create 
a specific pattern of each material in a sequential manner and create a complex pattern of 
several layers Introduction 
For fabricating an IC in the clean room following steps are performed. 

Á Wafer Preparation 
Á Oxidation 
Á Lithography (Photoresist & Masking) 
Á Etching  
Á Dopant Incorporation (Diffusion & Ion Implantation) 
Á Crystal Epitaxial Growth 
Á Deposition  
Á Isolation 
Á Cleaning 

 

Packaging & Testing 
After fabricating the chip in a clean room, it should pass some specific tests before 
commercial use. If all test is confirmed it is packaged and sent to the consumer. 

Chip 
The final output of the process is a chip. 
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EDA Files 

Liberty Timing File (.lib file) 

ASCII representation of the timing and power parameters associated with any cell in particular 

semiconductor technology. Types of lib file Fast lib, Slow lib, and Typical lib. Basic differences 

among those libraries are Nominal voltage Nominal temperature cell leakage Power Capacitance, 

Fall power, Rise power, and Timing. 

Library Exchange Format (.lef file) 

LEF is a specification file for representing the physical layout of an IC in an ASCII format. It contains 

library information for a class of designs. It mainly contains Layer information, Via information, 

Placement site type and origin, and Macrocell definitions. 

SDC (Standard Design Constraint ) 

The Standard Design Constraint format is used to specify the design intent, including the timing, 

power and area constraints for a design. 

Cap table  

Cap table contains information of parasitic Resistance and Capacitance which is used to model 

the interconnect of a design. 

Cdb (Celtic Database) 

For signal integrity analysis besides lib files, the tool required the .cdb files also. The main issues 

of concern for signal integrity are Ringing, Crosstalk, Ground bounce, Distortion, Signal loss, 

Power supply noise.  

 

Commonly used EDA Tools 

Function Tools 
Analog Design Cadence Virtuoso, HSPice, LTSpice 

Cell Layout Design Cadence Virtuoso Layout Suit 

RTL Coding Cadence NCSim, ModelSim, Quartus 

Synthesis Cadence Genus, Yosys Open Synthesis Suite 

Physical System Design and STA Cadence Encounter, Innovus 

Verification Cadence Assura, Mentor graphic Calibre 
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Probable List of Lab Tasks 

The following processes of VLSI ASIC design flow will be covered in the upcoming classes. 

Front End Process 

Á Verilog HDL programming language. 

Á Functional Verification using Verilog Testbench. 

Á Modeling Sequential Systems and FSM using Verilog. 

Á Synthesis  

Backend Process 

Á Physical Design  

Á Static Timing Analysis  

Á Physical Verification and Power Analysis 

Assessment Procedure and Marks Distribution (Tentative) 

Assessment Type Percentage 
             i)   Continuous Performance 10 

             ii)  Lab Test-1 20 

             iii) Lab Test-2 25 

             iv)  Assignment 15 

             v)  Project 30 

Total 100 
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Lab-1: Introduction to Verilog HDL Programming 
 

Objective 

The main objectives of this lab are: 

¶ Basic terminology of Verilog HDL programming. 

¶ Familiarization with different levels of Abstraction in Verilog HDL. 

¶ Simulating Verilog HDL using ModelSim. 

Introduction 

A system or chip can be designed in two ways: analog design and digital design. In the analog 

design process, circuit blocks are designed at the transistor level. Nowadays high performing 

chips are designed with more smarter functions and that has increased the density of the 

transistor in a chip. In VLSI (Very Large-Scale Integration) technology chips are designed with 

more than 100,000 transistors. So it is not easy to design and verify such a complex system in an 

analog process. In the digital design process, according to the functionality of a chip, a 

synthesizable RTL description of the system is modeled using the Hardware Description Language 

(HDL). HDL gives the advantage of simulating and verifying the design output and functionality 

easily before they were fabricated on chips.  For a long time, programming languages such as 

FORTRAN, Pascal, and C were used to describe sequential computer programs after that 

Hardware Description Languages (HDLs) came into existence to model the concurrency processes 

found in hardware elements. Some common HDLs are Verilog, System Verilog, VHDL, VerilogA. 

Verilog Module 

Modules are the building blocks of the Verilog design. Modules can be embedded within other 

modules, and a higher level module can communicate with its lower-level modules using their 

input and output ports. A module should be enclosed within a module and endmodule keywords. 

The following figure shows the structure of any Verilog module. 
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Port Types 

Port provides the interface by which a module can communicate with the internal and external 

environment. Based on the direction of the signal Verilog language allows three types of ports. 

Ports can be declared as follows. 

Type of Port Verilog Keyword 

Input port input 

Output port output 

Bidirectional port inout 

Data Types 

Verilog language has two primary data types called Nets and Registers.  

1. Nets 
¶ Represents structural connections between components.  

¶ 5ŜŎƭŀǊŜŘ ŀǎ ΨǿƛǊŜΩΦ 

¶ By default, one bit. 

¶ All port declaration are implicitly declared as wire in Verilog 

2. Registers 
¶ Represents the variables used to store data. 

¶ 5ŜŎƭŀǊŜŘ ŀǎ ΨǊŜƎΩΦ 

¶ Stores/holds the last assigned value until it is changed.  

¶ Must use register data type if a signal is assigned in procedural 

In Verilog, άǇŀǊŀƳŜǘŜǊέ is used to declare constants and does not belong to any other data type such as register 
or net data types. A constant expression refers to a constant number or previously defined parameter. We cannot 
modify parameter values at runtime, but we can modify a parameter value using the άŘŜŦǇŀǊŀƳέ statement. In 
ƳƻŘŜǊƴ w¢[ ŘŜǎƛƎƴΣ άlocalparamέ ƛǎ ǳǎŜŘ ǘƻ ŘŜŎƭŀǊŜ ŎƻƴǎǘŀƴǘǎΦ 

 

Port Connection Rule 

Verilog simulator shows violations if port connection rules are violated.   
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ϝ ¢ƘŜ ƴǳƳōŜǊ ƻŦ ōƛƴŀǊȅ 
ōƛǘǎ ǘƘŜ ƴǳƳōŜǊ ƛǎ 
ŎƻƳǇǊƛǎŜŘ ƻŦΦ 

ϝ5ŜŦŀǳƭǘ ƛǎ он ōƛǘ 

 

1. Input 
¶ Internal input ports must always be net (wire) type. 

¶ External input ports can be connected to reg or net type. 
 

2. Output 
¶ Internal output ports can be either reg or net type. 

¶ External outputs must be net type. 
 

3. Inouts 
¶ Internally and externally inout ports must be net type. 

¶ They are bidirectional.eg-power, ground, etc. 
 

4. Width Matching 
It is legal to connect internal and external items of different sizes when inter-module port 

connections. However, a warning is typically issued that the width does not match. 

 

5. Unconnected Ports 
Verilog allows ports to remain unconnected. For example, a full adder module has three 

inputs (A, B, C) and two outputs (sum, carry). SoΣ ƛŦ ǿŜ ŘƻƴΩǘ ǿŀƴǘ ǘƻ ǳǎŜ ŀƴȅ ƻŦ ǘƘŜ ƛƴǇǳǘǎ 

or outputs during the submodule call, we simply ignore that by keeping the place blank. 

Example if a module is full_add(A, B, C, SUM, Carry) during the submodule call if we want 

to ignore the C input can write as full_add a1(x,y,  ,z,l)   

 

Literals 

Literals are used for representing constant numbers. The syntax for a constant is shown below. 

ғǎƛȊŜҔΩ ғǎƛƎƴҔғōŀǎŜҔ ғƴǳƳōŜǊҔ 

 

 

 

 

 

 

* Indicates if the number is 

signed.  

*Either s or S. 

*Not case sensitive. 

*Default is unsigned 

*Radix of the number. 

*Binary: b or B 

*Octal: o or O 

*Hexadecimal: h or H 

*Decimal: d or D 

*Not case sensitive. 

*Default is decimal. 

Number 

according to 

base. 
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Example 01 

The following example demonstrates the Verilog syntax for different literals and data types.  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

parameter a,b,c,d,e,f,g,h; // declaration of multiple variables of parameter type 

reg [7:0]i;  
reg[7:0]j; 
a=549;    
ōҐпΩōȄΤ 
ŎҐуΩƘŦȄΤ 
dҐΨƘуCCΤ  
eҐрΩŘоΤ 
fҐуΩōллллмлммΤ 
gҐуΩōллллψмлммΤ 
hҐуΩōмлмм; 
i=пΩǎōмлмм; 
j= - пΩǎōмлмм; 

  

// reg type variable declaration which can store up to 8-bit 
// reg type variable declaration which can store up to 8-bit 
// decimal number 549, no size specified 
//4 -bit unknow value xxxx 
// 8 -bit number equivalent to 8b1111_xxx 
// hex number, no size specified 
// 5 -bit decimal number 00011 
// 8-bit binary number 00001011 
κκ άψέ ƛǎ ŀ ǎŜparator used to improve the readability of 8-bit number 00001011 
// 8-bit binary number 00001011 
// 4 -bit positive signed number 00001011  
//initializes with 1011 then for negative sign 2s complement is performed which 
is 0101 then 4 zeros are padded for signed value 00000101 

                  

Example 01 is not a complete Verilog Module it just demonstrates the syntax 

 

Verilog Operators 

To represent the functionality of a digital system different operators such as logical, bitwise, etc. 

operators must be used. In the following table, different Verilog operators are shown. 

 

Table demonstrating different operators 
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Example 02 

The following example demonstrates the basic logical syntax of basic logical operation used in 

digital system representation. We can represent the logical expressions in two ways called Gate 

Instantiations and Continuous Assignment. 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

module gates(A,B, Yn,Ya,Yo,Yx, Zn,Za,Zo,Zx);  
// Gate Instantiations 
output Yn,Ya,Yo,Yx; 
input A, B; 
not g1(Yn,A); 
and g2(Ya,A,B); 
or g3(Yo,A,B); 
xor g4(Yx,A,B); 
// Continuous Assignment 
output Zn,Za,Zo,Zx; 
assign Zn=~A; 
assign Za=A&B; 
assign Zo=A|B; 
assign Zx=A^B; 
endmodule 

 

 

 

Verilog Modeling Styles 

Digital systems are generally modeled in four ways called Switch-level modeling, Gate level or 

structural modeling, Data flow modeling (DFM), and Behavioral modeling.  

 

bΦ.Υ w¢[ ƛǎ ŀ ŎƻƳōƛƴŀǘƛƻƴ ƻŦ 5ŀǘŀ Cƭƻǿ ŀƴŘ .ŜƘŀǾƛƻǊ aƻŘŜƭƛƴƎ ǎǘȅƭŜǎΦ ¢ƘŜ ƭƻƎƛŎ ǎȅƴǘƘŜǎƛǎ ǘƻƻƭ 
Ŏŀƴ ƎŜƴŜǊŀǘŜ ŀ ƎŀǘŜπƭŜǾŜƭ ƴŜǘƭƛǎǘ ŦǊƻƳ w¢[Φ 

 

1. Switch level Modeling 

 
This method provides mechanisms for modeling MOS transistors using Verilog. This 

modeling style is used in very specific cases, for designing leaf cells in a hierarchical design. 

Switch-level modeling is not detailed enough to catch many of the problems. 
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Example 03 

The following example demonstrates the Verilog HDL code of an CMOS inverter using the switch 

level abstraction. 

 

 
 

            CMOS Inverter 

 

1 
2 
3 
4 
5 
6 
7 
8 
 

module inv_cmos(in,Y); 
input in; 
output Y; 
supply1 vdd; 
supply0 gnd; 
pmos p1(Y,vdd,in); 
nmos n1(Y,gnd,in); 
endmodule 

 

 

 

2. Gate level or structural modeling 

In this method, a system is designed using predefined gates or user-defined 

primitives. It is white box modeling because every design is visible inside the design. 

It is the lower level of abstraction. 
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Example 04  

The following example demonstrates the Verilog HDL code of a two to one multiplexer module 

using the gate level abstraction. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

/*  
Steps for Gate Level Modeling 
I. Develop the Boolean function of output 
II.Draw the logic diagram. 
III.Connect the gates with nets(wires). 
*/  
module mux_2to1(s,Io,I1,Y); 
input s,Io,I1; 
output Y; 
wire w1,w2,w3; 
not (w1,s); 
and (w2,Io,w1); 
and (w3,s,I1); 
or (Y,w2,w3); 
endmodule 

 

 

3. Data flow modeling (DFM) 

In this method, a system is designed by specifying the data flow between input and 

output. It uses continuous assignment statements to drive a value on a net or wire. It 

is a higher level of abstraction than the gate level. It may be either black-box modeling 

or white-box modeling depending on the design complexity. 

Example 05  

The following example demonstrates the Verilog HDL code of a two to one multiplexer module 

using the data flow modeling. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

/*  
Steps for Data Flow Modeling 
I.Obtain the relation between output and input. 
LLΦLƳǇŀƭŜƳŜƴǘ ǘƘŜ ƭƻƎƛŎŀƭ ǊŜƭŀǘƛƻƴ ǳǎƛƴƎ άŀǎǎƛƎƴέ ǎǘŀǘŜƳŜƴǘΦ 
*/  
module mux_2to1(s,Io,I1,Y); 
input s,Io,I1; 
output Y; 
wire w1,w2,w3; 
assign w1=~s; 
assign w2=Io & w1; 
assign w3=s & I1; 
assign Y=w2 | w3; 
endmodule 
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4. Behavioral modeling  

In this method, a system is designed and implemented in terms of a design algorithm 

based on the behavior of the design and its performance. Verilog behavioral code 

must be inside procedural statements/blocks only.  It is the highest level of 

abstraction. It is also known as black-box modeling.  

Procedural Block 

There are two types of procedural blocks in Verilog called άLƴƛǘƛŀƭέ and άŀƭǿŀȅǎέ blocks. 

tǊƻŎŜŘǳǊŀƭ ōƭƻŎƪǎ ŀǊŜ ŜǾŀƭǳŀǘŜŘ ƛƴ ǘƘŜ ƻǊŘŜǊ ƛƴ ǿƘƛŎƘ ǘƘŜȅ ŀǇǇŜŀǊ ƛƴ ǘƘŜ ŎƻŘŜ ǘƘŀǘΩǎ ǿƘȅ ƛǘ ƛǎ ŀƭǎƻ 

known as sequential statements. Procedural statements assign values to reg, integer, real or time 

variables. Procedural blocks cannot assign values to nets.  

a) άƛƴƛǘƛŀƭέ .ƭƻŎƪ 
¶ Statements inside the initial block are executed only once. 

¶ Executes at time zero. 

¶ Used in Test bench 

 

b) άŀƭǿŀȅǎέ .ƭƻŎƪ 
¶ Sensitivity list or list of signals that directly affect the output result must be 

defined in always block. 

¶ Whenever the value of a signal in the sensitivity list changes then the statements 

inside the always block is executed. 

 

always @ (sensitivity_list) 
begin 
         [procedural assignment statement] 
         [if-else statement] 
         [case statement] 
         [while, repeat and for loops] 
         [task and function calls] 
end 

 

Example 06 

The following example demonstrates the Verilog HDL code of a two to one multiplexer module 

using the behavioral modeling style. The always procedural block is used here to set the output 

of multiplexer(y) whenever any of the inputs (Io and I1) or selection input (s) changes. 

1 
2 
3 

/*  
Steps for Behavioral Modeling  
LΦ5ŜǾŜƭƻǇ ŀ ōŜƘŀǾƛƻǊŀƭ ŀƭƎƻǊƛǘƘƳ όƭƛƪŜ Ψ/Ω programming). 
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4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

II.According to the algorithm insert the behavioral statements inside the appropriate procedural 
block 
*/  
module mux_2to1(s,Io,I1,Y); 
input s,Io,I1; 
output reg Y; 
always@ (s,Io,I1)  //if we use always @* The * operator will automatically identify all sensitive variables. 
begin 
 if(s==0) 
  Y=Io; 
 else 
  Y=I1; 
end 
endmodule 

 

Hierarchical Modeling 

A Hierarchical methodology is used to design simple components to construct more complex 

components There are two design approaches when writing code in a hierarchical style called 

Top-Down and Bottom-Up methodology.Typically, designers use these two approaches side-by-

side to construct complex circuits.   

1. Top-Down Methodology 
In a top-down design methodology, we define the top-level block and identify the sub-

blocks necessary to build the top-level block. We further subdivide the sub-blocks until 

we come to leaf cells, which are the cells that cannot further be divided. 

 

 
 

 

Figure: Block representation of Top-Down methodology 
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2. Bottom-Up Methodology 
In a bottom-up design methodology, we first identify the building blocks that are available 

to us. We build bigger cells, using these building blocks. These cells are then used for 

higher-level blocks until we build the top-level block in the design. 
 

 
 

Figure: Block representation of Bottom-Up methodology 

Example 07 

The following example demonstrates the Verilog HDL code of a full adder following the 

Hierarchical Modeling style. In the design, the half adder is constructed from the predefined logic 

gates and then the half adder instance is used twice to design the full adder. This creates two 

instances in the same module. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

module Full_Adder(A,B,Cin,sum,carry); // Top module 
input A,B,Cin; 
output sum,carry; 
wire s1,c1,c2; 
Half_Adder sm1(s1,c1,A,B); 
Half_Adder sm2(sum,c2,s1,Cin); 
or o1(carry,c1,c2); 
endmodule 
 
module Half_Adder(s,c,x,y);  // macro cell 
input  x,y; 
output s,c; 
xor s1(s,x,y);   // predefined primitive or leaf cells 
and c1(c,x,y); 
endmodule 

 

N.B. One module can be instantiated to another module without maintaining the I/O sequence 
using the Namely Wise Instantiation method (.currentmodule_variable(submodule_variable)). 
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Blocking and Non-Blocking Assignment 

Blocking (=) and non-blocking (<=) assignments are provided to control the execution order 

within an always block. All the previous examples of combinational circuits used blocking 

assignments. But if the subsequent assignments depend on the results of preceding assignments 

non-blocking assignments needed to be used. The following examples demonstrates the use of 

blocking and non blocking assignments. 

Example 08 

In the following example, we have tried to design a shift register module named shift_reg using 

the blocking assignment.   

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

module shift_reg(clock,W,Q); 
input clock,W; 
output reg[3:0]Q; 
always@(posedge clock) 
begin 
          Q[3]=w; 
          Q[2]=Q[3]; 
          Q[1]=Q[2]; 
          Q[0]=Q[1]; 
end 
endmodule 

 

Now let us try to realize the output of Example 07 for that let us consider Initially Q=0000 and  

W=1. Now for the first two positive edges of the clock, the output will be following.  

Output 
//After the first positive edge of the clock 

Q[3]=W=1; 
Q[2]=Q[3]=1; 
Q[1]=Q[2]=1; 
Q[0]=Q[1]=1; 

//After  the second positive edge of the clock 
Q[3]=W=1; 
Q[2]=Q[3]=1; 
Q[1]=Q[2]=1; 
Q[0]=Q[1]=1; 

Now from the output, we can notice that the output is always the same. For a shift registrar, we 

know that the output will propagate bit-wise sensing each clock trigger but in the design of 

Example 08 that is absent due to the use of blocking assignment as the variable update is 

executed in the order they are coded. It should be noted that the blocking assignment blocks the 
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execution of the next statement till the current statement is executed. So, it can be said that 

blocking assignment is useful for combinational circuits. 

 

Example 09 

In the following example, we have modified the shift_reg module of Example 08 by replacing 

the blocking ŀǎǎƛƎƴƳŜƴǘ ǿƛǘƘ άnon-blockingέΦ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

module shift_reg(clock,W,Q); 
input clock,W; 
output reg[3:0]Q; 
always@(posedge clock) 
begin 
          Q[3]<=w; 
          Q[2]<=Q[3]; 
          Q[1]<=Q[2]; 
          Q[0]<=Q[1]; 
end 
endmodule 

 

Now let us try to realize the output of Example 08 for that let us consider Initially Q=0000 and 

W=1. Now for the first two positive edges of the clock, the output will be following.  

Output 
//After the first positive edge of the clock 

Q[3]=W=1 
Q[2]=Q[3]=0 
Q[1]=Q[2]=0 
Q[0]=Q[1]=0 

//After  the second positive edge of the clock 
Q[3]=W=0 
Q[2]=Q[3]=1 
Q[1]=Q[2]=0 
Q[0]=Q[1]=0 

 

Now from the output, we can notice that the output is propagating bit-wise by sensing each clock 

trigger after using the blocking assignment as the variable update process is executed in parallel. 

In this code execution of the next statement is not blocked due to the execution of the current 

statement. This method is useful for modeling sequential circuits and generating concurrent 

statements. 

There are three types of assignments in Verilog, continuous (assign),  blocking (=), and non 
blocking (<=). 
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Example 10 

The following example demonstrates the Verilog HDL code of a D Latch 

1 
2 
3 
4 
5 
6 
7 

module D_FF(clock,D,Q); 
input clock,D; 
output reg Q; 
always@(*) 
         if(clock) 
 Q<=D;    
endmodule 

 

Example 11 

The following example demonstrates the Verilog HDL code of a D flip-flop. A D flip-flop is a 1-bit 

data storage device that saves one-bit data depending on its input D and clock pulse. When a 

clock edge is triggered, whatever input is present in D goes to the output Q. 

1 
2 
3 
4 
5 
6 

module D_FF(clock,D,Q); 
input clock,D; 
output reg Q; 
always@(posedge clock) 
          Q<=D; 
endmodule 

 

Example 12 

The following example demonstrates the Verilog HDL code of a 4 to 2 priority encoder with a 
valid bit. In the example, the casex statement is used. In Verilog, there are three types of 
variations in case. The case, casex and casez all do bit-wise comparisons between the 
selecting case expression and individual case item statements. In the case statement, the values 
x or z in an alternative are checked for an exact match with the same values in the controlling 
expression. On the other hand, casex igƴƻǊŜǎ ŀƴȅ ōƛǘ Ǉƻǎƛǘƛƻƴ ŎƻƴǘŀƛƴƛƴƎ ŀƴ ΨȄΩ ƻǊ ΨȊΩΦ The 
casez  statement ƻƴƭȅ ƛƎƴƻǊŜǎ ōƛǘ Ǉƻǎƛǘƛƻƴǎ ǿƛǘƘ ŀ ΨȊΩΦ  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

module p_encoder_4to2(D,Y,V); 
input [3:0]D;             //declaring variable for input 
output reg [1:0]Y;   //declaring variable for output 
output reg V;          //declaring the variable for valid bit 
always@ * 
begin 
 casex(D) 
  4'b0001:  
  begin 
   Y=2'b00; V=1;  
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11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

  end 
  4'b001x: 
  begin 
   Y=2'b01; V=1; 
  end 
  4'b01xx: 
  begin 
   Y=2'b10; V=1; 
  end 
  4'b1xxx:  
  begin 
   Y=2'b11; V=1; 
  end 
  default:  
  begin 
   Y=2'bx; V=0; 
  end 
 endcase 
end 
endmodule 
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Simulating Verilog HDL  

1. Find the following icon on your PC and double-click on the icon to run the software. 

(Search: ModelSim - Intel FPGA Starter Edition Model Technology ModelSim - Intel FPGA 

Edition vsim 2020.1 (Quartus Prime 20.1)) 

 

 
2. The following window will pop up.  

 

 
 

3. Execute CƛƭŜ Ҧ bŜǿ Ҧ tǊƻƧŜŎǘΦ The Create Project window will appear. 

 

 
 

4. In the Create Project window change the Project Location to your directory (e.g. 

D:/150205022/Lab-1/Full_Adder) and give a name in the Project Name field. After that 

click on the OK button.  

[Project name must be same as the top module] 
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5. The Add items to the Project window will appear. Select the Crete New File button. 

 

 
 

6.  In the Create Project File window fill up the File Name field which must be identical to 

the project name and top module name. Also, select Verilog from the Add file as type 

dropdown menu. And ten  click OK button. 
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7. The Add items to the Project window will appear again. Click on the Close button. 

 

 
 

8. Now the ModelSim window will look like the following figure. 

 

 
 

 

 

 

 
































































































































































































































