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Experiment:01 

Name of Experiment: Study of the transient response of 1st and 2nd order circuit 
 

Objective: i) Observe the time response of 1st and 2nd order circuit. 

 ii) Calculate time constant, τ , of 1st order circuit. 

 iii) Calculate damping constant, ζ , of 2nd order circuit under different conditions 

(under/over/critically damped) and obtain voltage expression.    

 

Theory: 

Transfer function: It is the ratio of O/P by I/P of any system represented in laplace domain. It fully 

describes a control system. The order, type and frequency response can be derived from the open 

loop T/F (OLTF). They are used to determine the stability of the system. From the denominator of 

T/F, roots of the system can be obtained.  

 𝑇(𝑠) =
𝑌(𝑠)

𝑅(𝑠)
 

 

Order: The order of the system is derived from the denominator of the T/F. The number of poles 

(solutions of S in denominator) represents order of the system. Thus a 1st order system will have 

one pole, a 2nd order will have 2 poles and so on. Reactive components are responsible for order 

1st order circuit: 

 

𝑉𝑜(𝑠)

𝑉𝑖𝑛(𝑠)
=

1

𝑅𝑠𝐶 + 1
=

1
𝑅𝐶

𝑠 + 1/𝑅𝐶
 

 

Pole-Zero diagram:   For 1st order pole is 

in real axis. If R is 

varied it will move 

along real axis. 

G(s) 
R(s) Y(s) 

Impedance in laplace domain: 

C             1/jwc= 1/sC 

L              jwL= sL 

1/sC Vo 

−1/RC 

jWd 

ϭ 
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To obtain time response, we do inverse laplace: 

If Vin(t)=1; t>=0 (a step input) 

Vo(s)=

1

𝑅𝐶

𝑠+1/𝑅𝐶
∗ 1/𝑠 

Whereas Vo(t)=1-e-t/RC ; here time constant,τ=RC 

   

Voltage

Time

Vi(t)

Vo(t)

 

Figure: Response of 1st order circuit 

Thus, if the pole is closer to origin (R  ) Ts is higher and so curve reaches stability at a later 

point.  

2nd order circuit: 

Vin

R

L

C Vo

sL

1/sC

 

Figure: 2nd order circuit 

Transfer Function: T(s)=

1

𝐿𝐶

𝑠2+(
𝑅

𝐿
)𝑠+(

1

𝐿𝐶
)
 



3 
 

2nd order equation can be compared with:      
𝑊𝑛

2

𝑠2+2𝜁𝑊𝑛𝑠+𝑊𝑛
2  ; where, ζ=damping factor 

            𝑊𝑛 = 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

comparing the transfer function with the generalized form we obtain: 

𝑊𝑛 =
1

√𝐿𝐶
 

𝜁 =
𝑅

2
√𝐶/𝐿 

Thus by varying pot we can obtain different ζ 

   ζ=0 Undamped system (oscillatory) 

           0<ζ<1 Underdamped System 

 ζ=1 Critically Damped System 

 ζ>1 Overdamped System 

 

 

Figure : System under different dampings 

 

For critically damped system roots are real & equal. 

For underdamped system roots are complex and for overdamped roots are real and equal. 
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Setup circuit: 

1st order: 

Vin

100K POT

10uF Vo

 

Figure :Setup 1 

 

2nd  order: 

Vin

100K POT

10uF Vo

3H

 

Figure :Setup 2 

 

Procedure: 

Setup 1: i) Setup the circuit in a bread board, provide input, ground and oscilloscope connections 

from Analog discovery 2 device. 

ii) Vary the POT and for a fixed value of R measure the settling time from the output window. 

iii) Measure the respective R and compare it with the calculated R from Ts=5τ 

Setup 2: For underdamped and overdamped: 

i)Setup the circuit in a breadboard, providing required connections from Analog discovery 2 

device. 

ii) Vary the pot and obtain underdamped condition. Measure R of POT. 

iii) Repeat step (ii) for overdamped condition. 
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For critically damped: 

i)Calculate value of R from the equation : 𝜁 =
𝑅

2
√𝐶/𝐿 

ii)Adjust POT to that value. 

iii)Setup circuit and observe output. 

Obtained Parameter value: 

1st order system: R= C= 

2nd order system: Over damped R= C= L= 

Under damped R= C= L= 

Critical 

damped 

R= C= L= 

 

Assignment: 

1)Obtain the time constant for your 1st order practical circuit. 

2)Obtain the damping constant under all 3 conditions for the practical circuit. 

3)For 1st and 2nd order circuit (all 3 conditions) give the output time response using the R,L,C 

values used practically. 

 

  



6 
 

Experiment No:2  

Name of the Experiment: Study of the underdamped response of a second order circuit.  

Objectives: 
a. To observe the characteristics of the underdamped response of a second order circuit .  

b. To design a practical circuit using percentage overshoot and settling time (Ts). 

 

Theory: 
We have already come across a second order circuit and its transfer function in the previous 

experiment. 

 

 

 

 

 

 

 

 

 

 

 

                    Figure 2.1: A second order (RLC) circuit. 

 

In an underdamped system, the range of damping factor: 0<ζ<1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Parameters to describe a second order behavior. 

𝑉𝑂(𝑠)

𝑉𝑖𝑛(𝑠)
=

1
𝐿𝐶

𝑠2 +
𝑅
𝐿

𝑠 +
1

𝐿𝐶

 

∴ 𝜔𝑛 =
1

√𝐿𝐶
 & 𝜁 =  

𝑅

2
 √

𝐶

𝐿
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From the underdamped response, we can define different parameters, such as 

i) Rise time, Tr: Time for the response to rise from 10%-90% (for overdamped system) 

or 0%-100% (for underdamped system) of the final value. 

𝑇𝑟 ≅  
2.16𝜁 + 0.6

𝜔𝑛
 

ii) Peak, CP: It is the value of the first peak of the response. 

𝐶𝑃 = 1 +  𝑒

−𝜋𝜁

√1−𝜁2⁄

 
iii) Peak time, TP: Time required for the response to reach the first peak of the overshoot. 

𝑇𝑃 =  
𝜋

𝜔𝑛√1 − 𝜁2
 

 

iv) Settling level, CSS: The value at which the response settles down. 

v) Overshoot, MP: Overshoot is the amount by which a response goes beyond the steady 

state value before settling down. Overshoot can be measured from the step response. It 

is the ratio of the difference between peak and settling value to the settling value. 

∴ 𝑀𝑃 =
𝐶𝑃 − 𝐶𝑆𝑆

𝐶𝑆𝑆

 

𝑎𝑛𝑑 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡, %𝑀𝑃 =  
𝐶𝑃 − 𝐶𝑆𝑆

𝐶𝑆𝑆

 × 100% 

vi) Damped Time Period, Td: Difference in time between two successive positive peaks 

in damped region. 

vii) Settling time, TS: It is the time required for the response to settle down to the settling 

level. It can be measured in two ways: 

1. Response Settling Time: It is the time when the response settles down to a fixed 

value. 

Ts

 
2. Envelope Settling Time: An envelope is defined and the time at which the response 

enters the envelope and never leaves again, is called the Envelope Settling time. 
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Ts

 
*We often work for 2% and 5% envelope settling time, which are actually tolerance level. That is, 

if the steady state value is ‘1’, then for 2%, an envelope is defined where lower and upper limits 

will be at 0.98 and 1.02 respectively. So on for 5%. 

 

𝑇𝑆 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠

𝜁𝜔𝑛
≈

4

𝜁𝜔𝑛
 (2% 𝑒𝑟𝑟𝑜𝑟)  ≈  

3

𝜁𝜔𝑛
 (5% 𝑒𝑟𝑟𝑜𝑟)  

 

viii) Damping Factor: In the equations describing system behavior, overshoot is not an easy 

parameter to handle. Another parameter called Damping Factor is used and this gives 

an indication of the mount of overshoot in a system. Damping Factor has the symbol ζ 

(Zeta). ζ has a value of 1 when the system is critically damped, less than 1 when 

underdamped and greater than 1 when overdamped. The objective of a control system 

design is often to achieve a fast response without any overshoot or with just a little 

overshoot. Systems are usually designed for ζ in the range 0.7 to 1. The amount of 

overshoot is wholly dependent on the Damping Factor. Measuring overshoot allows 

the damping factor to be calculated and knowing ζ allows the overshoot to be 

calculated.  

They are linked by the equations: 

𝜁 =
√

1

1 + [
𝜋

ln(𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 𝑟𝑎𝑡𝑖𝑜)
]

2 

 

𝑆𝑜, 𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 𝑟𝑎𝑡𝑖𝑜 =  𝑒

−𝜋𝜁

√1−𝜁2⁄

⇒%𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 𝑟𝑎𝑡𝑖𝑜 =  100 × 𝑒
−𝜋𝜁

√1−𝜁2⁄
 

 
ix) Damped Frequency: The frequency at which an underdamped system oscillates is 

called the Damped Frequency, ωd. The inverse of the period of a cycle is its frequency 

in Hertz: 

𝑓𝑑=

1

𝑇𝑑
⇒ ωd = 2π𝑓𝑑= =

2π
𝑇𝑑

, 𝑤ℎ𝑒𝑟𝑒 𝑇𝑑  𝑖𝑠 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛.  

The time to the first peak, 𝑇𝑃, is half the period. The damped frequency can then be found by 

measuring the time to the first peak: 

ωd =
π

𝑇𝑃
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x) Natural Frequency: If there was no damping at all (ζ = 0), the system would 

continuously oscillate at a frequency which is called the Natural Frequency of the 

system. This is given the symbol𝜔𝑛. The relationship between Natural and Damped 

frequencies is: 

𝜔𝑛 =
𝜔𝑑

√1 − 𝜁2
 ⇒ 𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 

 

 

 

 

 
 

Circuit diagram: 
 

 

 

 

 

 

 

 

 

Figure 2.3: A second order (series RLC) circuit for setup. 

Procedures: 
To design a system having 40% overshoot . 

1) Set up the circuit shown in figure 2.3. Provide the input, ground and scope connection from 

Digilent Analog Discovery-2 device. 

2) Keeping the value of L and C fixed, calculate R. Vary the POT to that value. 

3) Open the Waveforms software on your PC and select ‘Wavegen’ from the Welcome 

window. 

4) Provide a square wave input from the ‘Wavegen’ window. 

5) Observe the scope and see whether the specified design criteria have been fulfilled or not. 

 

Data: 
R= L= 

C= % Overshoot(from figure)= 

 

Assignment: 

1. Design a second order circuit using Opamp, R, L and C. You must show the circuit 

diagram and the transfer function. 

2. You are asked to design a R-L-C circuit that will provide a rise time of 30ms. The 

inductor and capacitor are fixed at 5 H and 20uF. What will be the value of R.  

3. Design a second order circuit that will provide a overshoot of 60% and settling time of 

10s (2% method). 
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Experiment No: 3  

Name of the Experiment: Study of the frequency response of first and second order 

systems by Bode Plot method and stability analysis.  

Objectives: 
c. To observe the frequency response of first and second order systems using practical circuits.  

d. To observe the frequency response of first and second order systems using Simulink. 

e. To analyse the stability of the systems using the concept of gain margin and phase margin.  

 

Theory: 
The idea of frequency response originates when we excite a system with unit magnitude sine wave 

and the sine wave input produces sine wave output (provided system is linear). Frequency response 

describes how the magnitude and phase of the output sine wave varies as a function of the 

frequency of the input sine wave. 

 

 

 

 

 

 
 

Fig. 3.1: Relationships between input and output sinusoids 
 

The frequency response of a system is defined as the steady-state response of the system to a 

sinusoidal input signal. The sinusoid is a unique input signal, and the resulting output signal for a 

linear system, as well as signals throughout the system, is sinusoidal in the steady state; it differs 

from the input waveform only in amplitude and phase angle. 

 

In the study of control system, we mainly deal with two types of frequency response plots, namely- 

i) Polar plot or Nyquist plot 

ii) Logarithmic plot or Bode plot. 

In this experiment, we will study only Bode plot. The introduction of logarithmic plots, often 

called Bode plots, simplifies the determination of the graphical portrayal of the frequency 

response. The logarithmic plots are called Bode plots in honor of Engr. Hendry Wade Bode, who 

used them extensively in his studies of feedback amplifiers. The logarithmic gain in dB and the 

angle Φ(ω) when  plotted versus the frequency ω is known as Bode plot.  

 

Bode plot of a first order system: 

Let us consider an RC filter circuit that we have used in the first experiment as a first order system. 

The transfer function of the system is, T(s)= 
𝑉𝑜(𝑠)

𝑉𝑖𝑛(𝑠)
 = 

1

𝑠𝑅𝐶+1
 . 

 

 

 

 

 

 

Fig. 3.2: An RC filter circuit (a first order system) 
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The sinusoidal steady-state transfer function is T(jω)= 
1

𝑗𝜔𝑅𝐶+1
. 

Since T(jω) is a complex quantity, it has a magnitude and a phase. 

∴ |T(jω)|= 
1

√(𝜔𝑅𝐶)2+1
 and ∠ 𝑇(𝑗𝜔) =  tan−1 0

1
− tan−1 𝜔𝑅𝐶

1
= tan−1 𝜔𝑅𝐶 

The logarithmic gain is 

20 log |T(jω)| = 20 log 1 – 20 log (√(𝜔𝑅𝐶)2 + 1) = 0 - 20 log (√(𝜔𝑅𝐶)2 + 1)  

                        = - 20 log (√(𝜔𝑅𝐶)2 + 1) 

For small frequencies—that is, ω<< 
1

𝑅𝐶
, 20 log |T(jω)|≈ 0 dB 

For large frequencies—that is, ω>> 
1

𝑅𝐶
, 20 log |T(jω)|≈ -20 log 𝜔𝑅𝐶 dB 

We call the straight-line approximations asymptotes. The low-frequency approximation is called 

the low-frequency asymptote, and the high-frequency approximation is called the high-frequency 

asymptote. The frequency ω = 
1

𝑅𝐶
 , for this system, is called the corner frequency or break 

frequency of the system, since it is the break between the low- and the high-frequency asymptotes. 

At this frequency, the intersection of the two asymptotes occur as 

-20 log 1 = 0 dB = -20 log(𝜔𝑅𝐶) 

The actual logarithmic gain at this frequency, is actually 20 log |T(jω)| = -20 log √2 dB = -3 dB. 

The frequencies equal to or below 
1

10
 th of the corner frequency can be termed as small frequencies 

and the frequencies equal to or above 10 times the corner frequency can be termed as large 

frequencies. From these, the asymptotic logarithmic gain and phase angle can be determined as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  

 

 

Fig. 3.3: Bode Plot of an RC filter circuit (a first order system) 

ω 20 log |T(jω)| ∠ 𝑇(𝑗𝜔) 

ω=
1

10𝑅𝐶
 0 dB 0° 

ω = 
1

𝑅𝐶
 0dB -45° 

ω = 
10

𝑅𝐶
 -20 dB -90° 
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From fig. 3.3, it is observed that, for a first order system, the logarithmic gain plot will be 0 dB 

upto corner frequency and will have a slope of -20db/decade from the corner frequency. The phase 

plot will vary from 0° to -90° with the cutoff/corner frequency residing at -45°. 
 

Bode plot of a second order system: 

Let us consider a transfer function T(s) = 
1

𝑠2+2𝑠+1
 = 

1

(𝑠+1)(𝑠+1)
 

Evidently, the transfer function represents a second order system and the roots of the denominator 

are real and equal. Such type of system is a critically damped system. The sinusoidal steady-state 

transfer function is T(jω)= 
1

(𝑗𝜔+1)(𝑗𝜔+1)
  

Like the previous system, T(jω) is a complex quantity, and it has a magnitude and a phase. 

∴ |T(jω)|= 
1

(√𝜔2+1) (√𝜔2+1)
 and ∠ 𝑇(𝑗𝜔) =  tan−1 0

1
− tan−1 𝜔

1
− tan−1 𝜔

1
= −2 tan−1 𝜔 

The logarithmic gain is 

20 log |T(jω)| = 20 log 1 – 20 log (√𝜔2 + 1) – 20 log (√𝜔2 + 1) = 0 - 40 log (√𝜔2 + 1)  

                        = - 40 log (√𝜔2 + 1) 

For small frequencies—that is, ω<<1, 20 log |T(jω)|≈ 0 dB 

For large frequencies—that is, ω>>1, 20 log |T(jω)|≈ -40 log 𝜔 dB. Here, ω=1 is the corner 

frequency. The actual logarithmic gain at this frequency, is actually 20 log |T(jω)| = -40 log √2 dB 

= -6 dB. The asymptotic logarithmic gain and phase angle can be determined as follows: 

 
ω 20 log |T(jω)| ∠ 𝑇(𝑗𝜔) 

ω=
1

10
 0 dB 0° 

ω = 1 0dB -90° 

ω = 10 -40 dB -180° 

 

We can see that the bode plots for this system will be quite similar to that of a first order circuit, 

except the fact that the gain plot will have a slope of -40 dB/decade and the phase will vary from  

0° to -180° with the cutoff/corner frequency residing at -90°. The peak at the actual logarithmic 

gain plot and the slope of the actual phase plot will vary with the variation of damping factor, ζ. 

We can see this from figure 3.6. We will have a peak overshoot for underdamped system. This is 

due to an inherent phenomenon of a series RLC circuit, known as resonance. For the circuit shown 

in figure 3.4, we will obtain the plots shown in figure 3.5. 

: 

 

 

 

 

 

 

 

 

 

Fig. 3.4: An RLC circuit (a second order system) 
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Fig. 3.5: VR, VL, VC, and I versus frequency for a series resonant circuit. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6: Bode plot of second order system with varying damping factor 
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In figure 3.5, the peak VC and VL is obtained such as the value of R makes the system response 

underdamped. The peak VC will be on capacitive region and VL will be on inductive region. 

By varying the POT (R), we can vary damping factor and observe the change in the peak. The 

resonance frequency, ωr = 
1

√𝐿𝐶
 will remain unchanged. Thus we conclude that, for increase in order 

of the system, the slope of the logarithmic gain will decline further by -20 dB/decade and phase 

will vary extra 90° with cut-off being at the middle. 

 

Stability Analysis from Bode plot: 

n Bode plot, the 0 dB is the reference line for analysis in dB plot and -180° is the reference line in 

phase plot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.7: Gain and phase margin of second order system  

 

Frequency response specifications:  

1. Gain cross over frequency, 𝝎𝒈𝒄= It is the frequency at which the logarithmic magnitude plot 

intersects 0 dB point.  

2. Phase cross over frequency 𝝎𝒑𝒄 = It is the frequency at which the phase angle plot intersects     

-180° point.  

3. Gain margin, G.M = It is defined as the margin in gain allowable by which gain can be increased 

till system reaches on the verge of instability. Mathematically it is defined as the reciprocal of the 

magnitude of the T(jω) measured at phase cross over frequency. 

G.M is positive if above 0 dB line, G.M. is negative if below 0 dB line. 

4. Phase margin, 𝜱𝑴 = Amount of additional phase lag which can be introduced in the system till 

system reaches on the verge of instability. Mathematically it can be defined as the difference 

between the phase angle (∠ 𝑇(𝑗𝜔) )at gain cross over frequency and -180° 

ΦM is positive if above -180°line, ΦM is negative if below -180°line. 

If any of the margins is negative, then the system is unstable. 

When, 𝝎𝒈𝒄<𝝎𝒑𝒄, then the system is stable. 

𝝎𝒈𝒄=𝝎𝒑𝒄, then the system is oscillatory/ marginally stable. 

𝝎𝒈𝒄>𝝎𝒑𝒄, then the system is unstable. 
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Simulink library: 

Sl. Block Name: Symbol: Library: 

1. Resistance,Inductor,Capacitor, 

Electrical Reference,Opamp 

 

 

Simscape/Foundation 

Library/Electrical/Electrical 

Elements 

2. Controlled Voltage Source 

 

Simscape/Foundation 

Library/Electrical/Electrical 

Sources 

3. Voltage Sensor 

 

Simscape/Foundation 

Library/Electrical/Electrical Sensors 

4. PS-Simulink Converter, 

Simulink-PS Converter, Solver 

Configuration 

 

Simscape/Utilities 

5. Step, Ramp 

 

Simulink/Sources 

6.  Scope  Simulink/Sinks 

7. Mux  Simulink/Signal Routing 

8.  Gain and Phase Margin Plot  Simulink Control Design/ Linear 

Analysis Plots 

9. Integrator, Zero-pole, 

Transfer Fcn 

 

Simulink/Continuous 

10. Sum 

 

Simulink/Math Operation 

 

Simulink Block Diagram Model: 
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Procedures for Simulink: 

i) Enter the Simulink library by pressing the Simulink tab from “Home” window in 

MATLAB or by writing “Simulink” in command window. 

ii) To start building a new model, press “New Model”           on  Simulink Library 

Browser. 

iii) Build the block diagram model as shown. 

iv) To observe time response run simulation and double press “scope” to observe. 

v) To observe bode plot- 

a. Double click on “gain & phase margin block”. 

b. To set input and output lines, press ‘+” sign on the window that appears to extend 

it. 

c. From the model, select the output line by pressing mouse on the line. 

d. Press           on the gain & phase margin window to take the line under 

linearization. 

e. Repeat the same procedure for input line. 

f. Under “Configuration”, select “Input perturbation” for input line and “Open loop 

output” for output line. 

g. Select plot type as “Bode” and then press “show plot”. A blank window appears. 

Press the run button to generate the plot. 

h. To observe stability, right click the mouse on graph and under “characteristics”, 

select “All stability margins”. 

 

Practical Circuit Diagram: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6: A second order system with OPAMP. 

 

Procedures for Practical Circuit Diagram: 

i) Setup the circuit in a breadboard, provide input, ground and scope connection from 

Analog Discovery-2 device. 

ii) Go to “Wavegen” window and provide a sine wave input of 1V and 1Hz. 
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iii) Open the Waveforms software and go to “Network” window from Welcome menu. 

iv) Set the start frequency at a value less than 
𝑓𝐶

10
 and the end value at greater than 10𝑓𝐶 . 

v) Run the program. 

vi) Observe the bode plot, check the slope and phase angle at corner frequency and note 

down. 

 

Assignments: 

1. Provide the stability margins for a series RC and series RLC circuit used in the previous 

experiments. (Use practical values) 

2. For the following systems, plot the Bode plot in Simulink and obtain the stability 

margins” 

a) T(s) = 
21

𝑠2+10𝑠+21
 

b) T(s) = 
10

𝑠3+3𝑠2+3𝑠+1
 

c) T(s) = 
1

𝑠3+3𝑠2+3𝑠+1
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Experiment No: 4  

Name of the Experiment: Study of the frequency response of first and second order 

circuits by Nyquist/Polar Plot method and stability analysis.  

Objectives: 
f. To observe the frequency response by polar plot of first and second order circuit using 

practical circuits.  

g. To observe the frequency response of first and second order circuit using Simulink. 

h. To analyse the stability of the system from Nyquist plot using the concept of gain margin 

and phase margin.  

 

Theory: 
The Nyquist criterion relates the stability of a closed-loop system to the open-loop frequency 

response and open-loop pole location. Thus, knowledge of the open loop system's frequency 

response yields information about the stability of the closed-loop system. The Nyquist Stability 

criterion was discovered by the Swedish-American electrical engineer Harry Nyquist at Bell 

Telephone Laboratories in 1932. 

 

Procedures for finding the Frequency Response by Nyquist/ Polar plot: 

1. At first find the transfer function, T(s) of the system 

2. Substitute s=j𝜔 in the transfer function, T(s). So, T(s)| s=jω= T(jω) 
3. Write out expressions for magnitude and phase of transfer function 

T(jω)= R(ω)+ jX(ω)= |T(jω)| ∠ 𝛷(𝑗𝜔) 

where, |T(jω)|= √|𝑅(ω)|2 + |𝑋(ω)|2 , and 𝛷(𝑗𝜔) = tan−1 𝑋(ω)

𝑅(ω)
 

4. Determine the magnitude and phase as ω goes to zero. 

5. Determine the magnitude and phase as ω goes to infinity. 

6. Determine magnitude and frequency when phase takes key values, e.g. at corner frequency, 

when phase is -180° , etc. 

 

Nyquist plot of a first order system: 

Let us consider an RC filter circuit that we have used in the first experiment as a first order system. 

The transfer function of the system is, T(s)= 
𝑉𝑜(𝑠)

𝑉𝑖𝑛(𝑠)
 = 

1

𝑠𝑅𝐶+1
 . 

 

 

 

 

 

 

  

 

Fig. 4.1: An RC filter circuit (a first order system) 

The sinusoidal steady-state transfer function is T(jω)= 
1

𝑗𝜔𝑅𝐶+1
. 

Since T(jω) is a complex quantity, it has a magnitude and a phase. 

∴ |T(jω)|= 
1

√(𝜔𝑅𝐶)2+1
 and ∠ 𝛷(𝑗𝜔) =  tan−1 0

1
− tan−1 𝜔𝑅𝐶

1
= − tan−1 𝜔𝑅𝐶 
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The corner frequency or break frequency of the system is ω = 
1

𝑅𝐶
 . 

From these, the magnitude and phase angle for polar plot can be determined as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                  

Fig. 4.2: Nyquist Plot of an RC filter circuit (a first order system) 

 

Nyquist plot of a second order system: 

Let us consider a transfer function T(s) = 
21

𝑠2+10𝑠+21
 = 

21

(𝑠+3)(𝑠+7)
 

Evidently, the transfer function represents a second order system and the roots of the denominator 

are real and but not equal. Such type of system is an over damped system. The sinusoidal steady-

state transfer function is T(jω)= 
1

(𝑗𝜔+3)(𝑗𝜔+7)
  

Like the previous system, T(jω) is a complex quantity, and it has a magnitude and a phase. 

∴ |T(jω)|= 
1

(√𝜔2+32) (√𝜔2+72)
 and ∠ 𝛷(𝑗𝜔) =  tan−1 0

21
− tan−1 𝜔

3
− tan−1 𝜔

7
= − tan−1 𝜔

3
−

tan−1 𝜔

7
 

The corner frequencies of the system are ω = 3, 7.From these, the magnitude and phase angle for 

polar plot can be determined as follows: 

 
ω |T(jω)| ∠ 𝛷(𝑗𝜔) 

ω=0 1 0° 

ω = ∞ 0 -180° 

ω = 3 0.65 -68.2° 

ω = 7 0.27 -111.9° 

 

ω |T(jω)| ∠ 𝛷(𝑗𝜔) 

ω=0 1 0° 

ω = ∞ 0 -90° 

ω = 
1

𝑅𝐶
 0.707 -45° 
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ω=3, 0.65∠ − 68.2° 

ω=7, 0.27∠ − 111.9° 

ω=∞, 0∠ − 180° 

𝜃 

*For negative frequencies, we will have a mirror plot. 

*Phase angle varies 0°~ − 180° for 2nd order system, 0°~ − 90°  for 1st order system,  

0°~ − 270° for 3rd order system and so on. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

  

 

  

 

 

 

Fig. 4.3: Nyquist Plot of a second order system. 

 

Stability Analysis from Nyquist plot: 

In Nyquist plot, the reference line for stability analysis is 1 (=0 dB) and -180°. 

Consider a 3rd order system having a transfer function, T(s) = 
10

𝑠3+3𝑠2+3𝑠+1
. 

Its Nyquist plot will be as follows 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4: Gain and phase margin of a third order system 

90°/−270° 

180°/−180° 

270°/−90° 

0°/360° 
ω=0, 1∠0° 

−180° 

PM 𝝎𝒈𝒄 𝝎𝒑𝒄 

. 
 

-1 
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Since at 0 dB=1 crossing point we obtain gain cross over frequency, so we draw a circle with 

radius 1. 

 

* To obtain Gain margin, G.M: The -180° axis crossing point frequency is the phase cross over 

frequency point, 𝝎𝒑𝒄. The difference between the 𝝎𝒑𝒄 point and the unity circle gives G.M. Gain 

Margin is positive if the 𝝎𝒑𝒄 point < unity circle and negative if 𝝎𝒑𝒄 point > unity circle. 

* To obtain Phase margin, P.M.: We draw a straight line to 𝝎𝒈𝒄 point from the center of the unit 

circle and the angle from -180° axis is the phase margin, P.M. Phase margin is positive if below  

-180° axis and negative if above -180° axis. 

 

If any of the margins is negative, then the system is unstable. 

 

Simulink Physical System Design: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Procedures for Simulink: 

vi) Enter the Simulink library by pressing the Simulink tab from “Home” window in 

MATLAB or by writing “Simulink” in command window. 

vii) To start building a new model, press “New Model”           on Simulink Library 

Browser. 

viii) Build the physical as shown. 
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ix) To observe time response run simulation and double press “scope” to observe. 

x) To observe bode plot- 

i. Double click on “gain & phase margin block”. 

j. To set input and output lines, press ‘+” sign on the window that appears to extend 

it. 

k. From the model, select the output line by pressing mouse on the line. 

l. Press           on the gain & phase margin window to take the line under 

linearization. 

m. Repeat the same procedure for input line. 

n. Under “Configuration”, select “Input perturbation” for input line and “Open loop 

output” for output line. 

o. Select plot type as “Nyquist” and then press “show plot”. A blank window 

appears. Press the run button to generate the plot. 

p. To observe stability, right click the mouse on graph and under “characteristics”, 

select “All stability margins”. 

 

Practical Circuit Diagram: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5: A second order system with OPAMP. 

 

Procedures for Practical Circuit Diagram: 

vii) Setup the circuit in a breadboard, provide input, ground and scope connection from 

Analog Discovery-2 device. 

viii) Go to “Wavegen” window and provide a sine wave input of 1V and 1Hz. 

ix) Open the Waveforms software and go to “Network” window from Welcome menu. 

x) Set the start frequency at a value less than 
𝑓𝐶

10
 and the end value at greater than 10𝑓𝐶 . 

xi) Run the program. 
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xii) Observe the bode plot, check the slope and phase angle at corner frequency and note 

down. 

xiii) Click the “View” tab on the Network window, and then select “Nyquist”. The 

Nyquist plot of the system will appear in a window beside the Bode plot. Remember, 

since there is no such thing as negative frequency in real life, you will see only the 

positive frequency part of the Nyquist plot 

 

 

 

 

 

Assignments: 

3. For the following systems, obtain the Nyquist  plot in Simulink by physical system 

design and obtain the stability margins: 

d) T(s) = 
21

𝑠2+10𝑠+21
 

e) T(s) = 
10

𝑠3+3𝑠2+3𝑠+1
 

f) T(s) = 
1

𝑠3+3𝑠2+3𝑠+1
 

g) T(s) = 
1

𝑠2+2𝑠+1
 

h) T(s) = 
1

𝑠2+11𝑠+30
 

 

4. Also draw the Nyquist plot fro theoretical calculations for the above mentioned systems. 
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Experiment No: 5 

Name of the Experiment: Study of steady state error analysis of different Types of 

system. 

 

Objectives: 
i. To determine steady state error for different Types of systems using different input signals.  

j. To analyse when the steady state error is reduced or nullified. 

k. To verify the steady state error analysis using Simulink and practical circuits. 

 

Theory: 
In many control system designs, we are specifically interested in the final, or steady state value of 

the output. This is known as steady state accuracy. Ideally, in the steady state, the output, y(t), 

equals the command signal, r(t), and the error is zero. This ideal situation is rarely met, and so we 

need to be able to determine the steady state error for any system.Steady-state error is the difference 

between the input and the output for a prescribed test input as t→∞.  The steady state error is defined 

as:  

𝑒𝑆𝑆 =  lim
𝑡→∞

𝑒(𝑡) =  lim
𝑡→∞

[𝑟(𝑡) −  𝑦(𝑡)] 

Only for unity feedback systems, the error is the comparator output signal and we can determine 

the steady state error by examining the open loop transfer function G(s). Since error in the final 

value can be termed as steady state error, by using “Final Value Theorem”we get, 

𝐸𝑆𝑆 =  lim
𝑠→0

𝑠𝐸(𝑠) … … … … … (1) 

 

Let us consider the following closed loop system with unity feedback. 
 

 

 

 

 

 

From the block diagram it is seen that, 

E(s)= R(s) –Y(s) =R(s) – G(s) E(s) 

∴ 𝐸(𝑠) =  
𝑅(𝑠)

1 + 𝐺(𝑠)
… … … … … … … … … … (2) 

From equations (1) and (2) it can be written that 

𝐸𝑆𝑆 = lim
𝑠→0

𝑠

1 + 𝐺(𝑠)
 𝑅(𝑠) … … … … … … (3) 

 

Another term that will be frequently used in the analysis of steady state error is Type of a system. 

Type of a system simply means how many poles the system has in the origin. A Type-0 system 

has no pole in the origin, a Type-1 system has one pole in the origin, a Type-2 system has two and 

so on. The type of a system can be increased by simply adding an integrator (
1

𝑠
). We will see how 

the Type of a system affects its steady state error. 

G(s) R(s) Y(s) 
E(s) 
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Because the actual input signals to a system is usually unknown, standard test input signals are 

employed to determine time domain performance specifications. We are interested in the steady 

state error for step, ramp, parabolic, and higher order polynomial inputs, i.e 

𝑟(𝑡) = 
𝑡𝑛

𝑛!
 → R(s) = 

1

𝑠𝑛+1
 , n= 0, 1, 2…………….. 

Test inputs that will be used for steady-state error analysis and design are summarized in Table 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For Step Input:𝑅(𝑠) =
1

𝑠
 

Putting this in equation (3) we get 

𝐸𝑆𝑆 = lim
𝑠→0

𝑠 

1 + 𝐺(𝑠)
.
1

𝑠
 

 

⇒ 𝐸𝑆𝑆 = lim
𝑠→0

1

1 + 𝐺(𝑠)
… … … … … (4) 

In equation (4), only the term G(s) in the denominator will have effect of putting s→0. G(s) is the 

open loop transfer function of the system, which can be expressed in terms of zeroes and poles. 

Let us denote the poles by ‘p’ and zeroes by ‘z’, then G(s) for a system having ‘n’ no. of zeroes 

and poles can be expressed as 

𝐺(𝑠) =
(𝑠 + 𝑧1)(𝑠 + 𝑧2) … … … … . (𝑠 + 𝑧𝑛)

(𝑠 + 𝑝1)(𝑠 + 𝑝2) … … … … . (𝑠 + 𝑝𝑛)
… … … … … . (5) 

 

When s→0, 𝐺(𝑠) =
𝑧1𝑧2…….𝑧𝑛

𝑝1𝑝2……𝑝𝑛
 = 𝐾𝑃 

where, 𝐾𝑝 is called position constant. So equation (4) can be written as 

𝐸𝑆𝑆 =
1

1 + 𝐾𝑝
 , 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎𝑐𝑡𝑢𝑎𝑙𝑙𝑦 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 
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We can see from equation (5) that the system has no pole at the origin. So, from the above 

discussion, it can be inferred that for a Type-0 system, the steady state error has a constant value 

for Step Input. What should be done to make this value 0? 

 If we consider a Type-1 system, i.e. a system with one pole at the origin, then G(s) can be 

expressed as 

𝐺(𝑠) =
(𝑠 + 𝑧1)(𝑠 + 𝑧2) … … … … . (𝑠 + 𝑧𝑛)

𝒔(𝑠 + 𝑝1)(𝑠 + 𝑝2) … … … … . (𝑠 + 𝑝𝑛)
… … … … … . (6) 

 

When s→0, 𝐺(𝑠)= ∞. So equation (4) can be written as 

 

𝐸𝑆𝑆 =
1

1 + ∞
= 0 

So, it can be further inferred that for a Type-1 system, the steady state error becomes 0 for Step 

Input. Similarly it can be shown that for a Type-2 system, the steady state error becomes 0 for Step 

Input. Similarly, steady state error for other two standard input signals can be determined can be 

determined for different types of system.  

 

Following table shows the steady state errors for Type 0, 1, and 2 systems for the standard input 

signals. 

Steady State Errors for Polynomial Inputs 

System Type → 

Polynomial Degree ↓ 

 

0 1 2 

Step Input 

 

1

1 + 𝐾𝑝
 

0 0 

Ramp Input 

 
∞ 1

𝐾𝑣
 

0 

Parabolic Input 

 
∞ ∞ 1

𝐾𝑎
 

 

Because we deal with many e1ectromechanical systems, control engineers also define position, 

velocity and acceleration error constants as follows.  

𝐾𝑝= 𝐺(0),𝐾𝑣 = lim
𝑠→0

 𝑠 𝐺(𝑠), 𝐾𝑎 = lim
𝑠→0

𝑠2 𝐺(𝑠) 

 

Simulink library: 

Sl Block Name: Symbol: Library: 

1. Resistance,Inductor,Capacitor, 

Electrical Reference,Opamp 

 

 

Simscape/Foundation 

Library/Electrical/Electrical 

Elements 

2. Controlled Voltage Source 

 

Simscape/Foundation 

Library/Electrical/Electrical Sources 
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3. Voltage Sensor 

 

Simscape/Foundation 

Library/Electrical/Electrical Sensors 

4. PS-Simulink Converter, 

Simulink-PS Converter,Solver 

Configuration 

 
 

Simscape/Utilities 

5. Step, Ramp 

 

Simulink/Sources 

6.  Scope, Display  Simulink/Sinks 

7. Integrator, Zero-pole, 

Transfer Fcn 

 

Simulink/Continuous 

8. Sum 

 

Simulink/Math Operation 

 

Setup Circuit: 

 
Type 0 System: 

10KΩ 

10KΩ 

10KΩ 

10KΩ 

10KΩ 1KΩ 

10KΩ 

10uF

1KΩ 

-Vcc -Vcc -Vcc

+Vcc +Vcc +Vcc

Vo

Vo

Vi

 
Figure 1:Type 0 system 
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Type 1 System

10KΩ 

10KΩ 

10KΩ 

10KΩ 

10KΩ 1KΩ 

10KΩ 

10uF

-Vcc -Vcc -Vcc

+Vcc +Vcc +Vcc

Vo

Vo

Vi

1000uF

 
Figure 2:Type 1 System 

Procedure: 

1) Setup the circuit of figure-1 in a breadboard. 

2) Connect analog discovery to the circuit in order to provide input, scope, Ground and +/- 

Vcc. 

3) Provide step input from analog discovery with 1V & 1 Hz. Measure the difference 

between input and output from scope window. This value is the Ess. 

4) Provide ramp and sine wave sequentially and observe the output. 

5) Follow similar procedure for the second circuit and this time measure the difference 

when ramp input is given. 

6) Build the same circuits in Simulink environment and compare the results.  

Results: 

Practical Circuit: 

 Step Ramp Parabolic 

Type 0 Ess= Ess= Ess= 

Type 1 Ess= Ess= Ess= 

 

Simulink: 

 Step Ramp Parabolic 

Type 0 Ess= Ess= Ess= 

Type 1 Ess= Ess= Ess= 

Type 2 Ess= Ess= Ess= 

 

Assignment: 

1)Design all the circuits (type 0/1/2) in Simulink environment and show output for each of the 3 

input types. 
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2) For the following Open loop TF, design the model in Simulink and show outputs for each of 

the 3 inputs (step/ramp/parabolic): i)𝐺(𝑠)𝐻(𝑠) =
1

(𝑠+4)(𝑠+6)
 

     ii) 𝐺(𝑠)𝐻(𝑠) =
1

𝑠(𝑠+10)
 

      iii) 𝐺(𝑠)𝐻(𝑠) =
10

𝑠2(𝑠+4)(𝑠+6)
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Experiment No. : 6 

Name of the Experiment: Study of the Root Locus of a System simulated on PC using 

the “MATLAB” software.                                                                                                                    
 

Objectives: 
l. To plot the root locus of a given system using SISOTOOL GUI of MATLAB. 

m. To see the changes in the step response by varying the controller gain. 

n. To modify root locus to meet some particular system criteria. 

 

Theory: 
Root Locus can be referred to as the location of roots of a closed loop system while varying a 

system parameter, like gain. It is the path of the roots of the characteristic equation traced out in 

the s-plane as a system parameter varies from zero to infinity. The root locus method was invented 

by Walter Richard Evans, a noted American control theorist, in 1948 and has been developed 

and utilized extensively in control engineering practice. It is a powerful method of analysis and 

design for stability and transient response. The root locus can be used to describe qualitatively the 

performance of a system as various parameters are changed. For example, the effect of varying 

gain upon percent overshoot, settling time, and peak time can be vividly displayed. The qualitative 

description can then be verified with quantitative analysis. Besides transient response, the root 

locus also gives a graphical representation of a system's stability. We can clearly see ranges of 

stability, ranges of instability, and the conditions that cause a system to break into oscillation.  

 

Let us consider the following closed loop system. 
 

 

 

  

 

 

 

 

The closed loop transfer function can be written as 

𝐶𝐿𝑇𝐹 =
𝑉𝑂

𝑉𝑖𝑛
=  

𝐾 𝐺(𝑠)

1 + 𝐾 𝐺(𝑠)𝐻(𝑠)
… … … … … … (1) 

And the open loop transfer function can be written as 

𝑂𝐿𝑇𝐹 =
𝑉𝑂

𝑉𝑖𝑛
=  𝐾 𝐺(𝑠)𝐻(𝑠)………………… (2) 

The closed loop transfer function can also be written as 

 

𝐶𝐿𝑇𝐹 =
𝑉𝑂

𝑉𝑖𝑛
=  

𝐾 
𝑁1
𝐷1

1 + 𝐾 
𝑁1 𝑁2
𝐷1 𝐷2

… … … … … … … . (3) 

Where, N1, N2, D1, D2 are the Numerators and Denominators of G(s) and H(s) respectively.  

 

From equation (3), we can write,  

G(s) 𝑽𝒊𝒏 𝑽𝑶 

 

H(s) 

 

K 
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𝐶𝐿𝑇𝐹 =
𝑉𝑂

𝑉𝑖𝑛
=  

𝐾 𝑁1 𝐷2

𝐷1 𝐷2 + 𝐾 𝑁1 𝑁2
… … … … … … … . (4) 

The characteristic equation of the system is 1+ G(s) H(s) = 0. It is called so because the solution 

of this equation provides an idea about the characteristics of the system. From equation (1) and (4) 

we can write the characteristic equation as  

𝐷1 𝐷2 + 𝐾 𝑁1 𝑁2 = 0 … … … … … (5) 

Root locus technique is a graphical method for sketching the locus of the roots of the characteristic 

equation in the s-plane as the parameter K is varied. Actually the roots of the characteristic 

equation are the poles of the CLTF. 

 

When K=0, equation (5) becomes 

𝐷1 𝐷2 = 0 … … … … … (6) 

The solution of equation (6) gives us the open-loop poles of the system [refer to equation (2)]. So, 

we can say that when the controller gain, K =0, the open loop poles and the closed loop poles of a 

system are at the same position. 

 

Again, when K= ∞, equation (5) can be written as 

𝐾 (
𝐷1 𝐷2

𝐾
+  𝑁1 𝑁2) = 0 

 

⇒
𝐷1 𝐷2

∞
+  𝑁1 𝑁2 = 0 

⇒ 𝑁1 𝑁2 = 0 … … … … … (7) 

The solution of equation (7) gives us the open-loop zeroes of the system [refer to equation (2)]. 

So, we can say that when the controller gain, K =∞, the open loop zeroes and the closed loop poles 

of a system are at the same position. 

 

From the aforesaid discussion, we see that as the controller gain, K is varied from 0 to ∞, the closed 

loop poles of the system moves from the position of open loop poles to that of open loop zeroes. 

This path of movement of the closed loop poles in the s-plane is actually the root locus of the 

system. So, it can be inferred that, the root locus of a system begins at Open Loop Poles (or 

Closed Loop Poles when K=0) and ends at Open Loop Zeroes (or Closed Loop Poles when 

K=∞)of that system. 

 

If the no. of open loop poles and open loop zeroes of a system are equal, each root locus will 

find a definite ending point. If they are not equal, then one or more locus/loci will end at infinity 

(finding open loop zero(es) at infinity). If there is no open loop zero, all the paths originating 

from open loop poles will leave for infinity. 

 

Let us consider a unity feedback system, where G(s) = 
1

𝑠 (𝑠+4)
 , H(s) = 1. The open loop poles of 

the system are at 0 and -4. But there is no open loop zero in the system. So how will the root locus 

look like? From our above discussion, we can visualize that as the gain, K is varied, the two open 

loop poles will look for open loop zeroes and move towards each other, meet at a point on the real 

axis, and then leave for infinity in the search of open loop zeroes. We will verify this through 

SISOTOOL GUI of MATLAB. 

Basic Rules for Sketching the Root Locus 
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• Number of branches: The number of branches of the root locus equals the number of 

closed-loop poles. 

• Symmetry: The root locus is symmetrical about the real axis. 

• Real-axis segments: On the real axis, for K > 0 the root locus exists to the left of an odd 

number of real-axis, finite open-loop poles and/or finite open-loop zeros. 

• Starting and ending points: The root locus begins at the finite and infinite poles of 

G(s)H(s) and ends at the finite and infinite zeros of G(s)H(s). 

• Behavior at infinity: The root locus approaches straight lines as asymptotes as the locus 

approaches infinity. Further, the equations of the asymptotes are given by the real-axis 

intercept and angle in radians as follows: 

𝜎𝑎 =
∑ 𝑓𝑖𝑛𝑖𝑡𝑒 𝑝𝑜𝑙𝑒𝑠 − ∑ 𝑓𝑖𝑛𝑖𝑡𝑒 𝑧𝑒𝑟𝑜𝑒𝑠

#𝑓𝑖𝑛𝑖𝑡𝑒 𝑝𝑜𝑙𝑒𝑠 − #𝑓𝑖𝑛𝑖𝑡𝑒 𝑧𝑒𝑟𝑜𝑒𝑠
 

𝜃𝑎 =
(2𝑘 + 1)𝜋

#𝑓𝑖𝑛𝑖𝑡𝑒 𝑝𝑜𝑙𝑒𝑠 − #𝑓𝑖𝑛𝑖𝑡𝑒 𝑧𝑒𝑟𝑜𝑒𝑠
, 𝑤ℎ𝑒𝑟𝑒 𝑘 = 0, ±1, ±2, ±3, … … 

 
Additional Rules for Refining the Sketch 

• Real-axis breakaway and break-in points: The root locus breaks away from the real axis 

at a point where the gain is maximum and breaks into the real axis at a point where the gain 

is minimum. 

• Calculation of jω-axis crossings: The root locus crosses the jω-axis at the point where 

∠G(s)H(s) = (2k + 1)180°. Routh-Hurwitz or a search of the jω-axis for (2k + 1)180° can 

be used to find the jω-axis crossing. 

• Angles of departure and arrival: The root locus departs from complex, open-loop poles 

and arrives at complex, open-loop zeros at angles that can be calculated as follows. Assume 

a point ϵ close to the complex pole or zero. Add all angles drawn from all open-loop poles 

and zeros to this point. The sum equals (2k + 1)180°. The only unknown angle is that drawn 

from the ϵ close pole or zero, since the vectors drawn from all other poles and zeros can be 

considered drawn to the complex pole or zero that is ϵ close to the point. Solving for the 

unknown angle yields the angle of departure or arrival. 

• Plotting and calibrating the root locus: All points on the root locus satisfy the relationship 

∠G(s)H(s) = (2k + 1)180°. The gain, K, at any point on the root locus is given by 𝐾 =
1

|𝐺(𝑠)𝐻(𝑠)|
 

 

Guidelines for MATLAB’s SISO Design Tool GUI 

 

The SISO Design Tool is a graphical user interface (GUI) that facilitates the design of 

compensators for single-input, single-output feedback loops. The SISO Design Tool allows you to 

iterate rapidly on your designs and perform the following tasks: 

 

*Manipulate closed-loop dynamics using root 

locus techniques. 

*Inspect closed-loop responses (using the 

LTI Viewer). 

*Shape open-loop Bode responses. *Adjust phase and gain margins. 

*Add compensator poles and zeros. *Convert models between discrete and 

continuous time. *Add and tune lead/lag networks and notch 

filters. 
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Procedures: 
1. Write sisotool in the command window of MATLAB, press enter, SISOTOOL Design 

GUI opens. The following two windows will appear on your screen. The window below 

in the figure is “SISO Design for SISO Design Task”, or SISO Design tool window.  

Real and complex poles and zeroes in the system can be added/deleted using this tool.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. On SISO Design tool window, click on Edit>SISO Tool Preferences. Select the 

Options tab. Select “Zero/pole/gain” in the Compensator Format and Apply it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. On SISO Design tool window, click on Design >Edit Compensator. Right click inside the 

Dynamics box; the options of adding real and complex poles/zeroes etc. will appear. Add two 
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real poles of OLTF, 𝐺(𝑠)𝐻(𝑠) =  1 𝑠(𝑠 + 4)⁄ . Select a pole added on the Dynamics box, and 

then write the pole-position on Location box on the right-side under Edit Selected Dynamics. 

 

 

 

 

 

 

 

 

      

 

The SISO Design tool window now looks as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. To see the corresponding step response of the system in a separate window, click on 

Analysis, and then select “Response to Step Command”. Evidently it is an over-

damped response for the system chosen. Right click on the response, select “Systems”, 

two tick-marks can be seen on “Closed loop r to y (blue)” & on “Closed loop r to u 

(green)”. Un-tick “Closed loop r to u (green)”, because we want to see the input to 

output closed loop response, and in the architecture, the input node is named as r and 

the output node is named as y.  
 

 

 

 

 

 

 

 

 

 

 

 

5. Vary the controller gain, ‘K’ or in SISOTOOL, ‘C’ and observe the effect on the step 

response. Notice the two pink colored squares on the root locus. Left-click on any 

them, hold and drag to vary the gain. Overshoot starts to appear on the step response 

when the boxes are on the imaginary axis. When on imaginary axis, click & hold on 
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any of the pink squares, useful informations like current location of the poles, natural 

frequency and damping can be seen. Now keep the cursor on anywhere of the root locus 

plot, the value of gain at that point can be seen.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. System parameters like peak overshoot, settling time (2% margin), rise time can be seen 

from the step response. Right-click on the step response, go to characteristics, 

options like Peak response, settling time, rise time will appear. Each time you can 

select one. Some dashed lines and dots will appear, click on the dots to see the system 

parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. To transfer the plots to another application such as MS Word, choose Print to Figure 

from the File menu and the Save it by .jpg/.emf/.png etc. format. 

8. Observe the root locus and corresponding step response, effect of varying controller 

gain and the system parameters for other systems instructed by the teacher. 

 

Effect on  𝜻 and 𝝎n with respect to the pole position: 
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The roots of the denominator (𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2) of a general second order transfer function 

are, 𝑠1,2 = − 𝜁𝜔𝑛 ±  𝑗𝜔𝑛√1 − 𝜁2 =  −𝜎 ± 𝑗𝜔𝑑. The performance of the system will depend 

on the values of 𝜁 & 𝜔𝑛. The poles of an underdamped system can be shown in s-plane as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the pole plot, a=−𝜁𝜔𝑛, b=𝜔𝑛√1 − 𝜁2, thus ‘r’ can be by Pythagoras’ Theorem.  

So, 𝑟2 =  𝑎2 + 𝑏2 =  (−𝜁𝜔𝑛)2 + 𝜔𝑛
2(1 − 𝜁2) 

⇒ 𝑟2 = 𝜔𝑛
2  ∴ 𝒓 = 𝝎𝒏 

𝑎𝑔𝑎𝑖𝑛, 𝑐𝑜𝑠𝜃 =  
|𝑎|

|𝑟|
=

𝜁𝜔𝑛

𝜔𝑛
 ∴ 𝜻 = 𝒄𝒐𝒔𝜽 

Therefore, it can be inferred that if a semicircle is drawn in the s-plane taking the distance of 

any of the complex poles from the origin as radius, all the points on the semicircle the natural 

frequency, 𝜔𝑛 is equal. Inside the circle 𝜔𝑛 is smaller and outside the circle 𝜔𝑛 is greater. On 

the other hand, straight lines drawn from the origin of the s-plane at an angle θ can represent 

damping ratio, 𝜁. So when poles are moved 𝜁 & 𝜔𝑛 also changes accordingly.    

*if θ=0, 𝜁=1, so the system is then critically damped. 

*if we increase θ, then 𝜁 drecreases and the system becomes more underdamped. 

*if r is reduced (i.e. brought closer to the origin) then natural frequency,𝜔𝑛 drops. 

 

Meeting a specific Design Requirement: 

Suppose, we are asked to design a system having 40% overshoot and settling time of 5s 

(for 2% error). How do we design it? 

For 40% overshoot, we get ζ (damping ratio) = 0.28, from the equation 

% Overshoot ratio = 100× 𝑒
−𝜋𝜁

√1−𝜁2⁄
 

And settling time 5s (for 2% error) gives natural frequency,𝜔𝑛 = 2.86 𝑟𝑎𝑑/𝑠, from the 

equation 

𝑇𝑆 =  
4

𝜁𝜔𝑛
 (2% 𝑒𝑟𝑟𝑜𝑟) 

The intersecting points of “a semicircle with radius 2.86” and “two straight lines drawn from 

origin at an angle θ=𝒄𝒐𝒔−𝟏 (𝟎. 𝟐𝟖)” [since cosθ=ζ] on the s-plane are the points where the 

design requirements are fulfilled. In the following root locus plot, the two straight lines at an 

angle indicate pole locations with ζ=0.28; in between these lines, the poles have ζ> 0.28 and 

outside of the lines ζ< 0.28. The semi circle indicates pole locations with natural frequency 𝜔𝑛 

=2.86; inside the semicircle, 𝜔𝑛<2.86 and outside the semicircle 𝜔𝑛>2.86. 

 

 

−𝜎 = −𝜁𝜔𝑛 
𝜃 

a 

r b 

× 

𝜎 = 𝜁𝜔𝑛 

× 

s-plane 
𝑗𝜔 

+𝑗𝜔𝑑 = +𝑗𝜔𝑛√1 − 𝜁2 

−𝑗𝜔𝑑 = −𝑗𝜔𝑛√1 − 𝜁2 
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It is clearly seen that the root locus of the system does not pass through the desired points. So, 

to meet the design requirement, the poles have to be moved so that the root locus passes through 

the desired points. Follow the steps mentioned below. 

  

i) Go to the Root locus plot.Now right click-on root locus plot , go to design 

requirements>New. Here various design requirements can be set. Set the 

values of damping ratio and natural frequency as calculated. Each time we can 

set one design parameter. Each requirement defines an exclusion region, indicated 

by a yellow shaded area. To satisfy a requirement, a response plot must remain 

outside of the associated exclusion region. Now a semicircle and two straight lines 

at an angle can be seen.  

ii) Hold the pole at -4 and drag it towards right until the imaginary axis part of 

the  root locus passes through the intersecting points of the straight lines and 

the semicircle. Then drag the pink square boxes until they reach the 

intersecting points. At this stage the requirements are met and can be seen from 

the step response, with slight deviations due to the rounded-off calculations. Click 

once on any of the pink squares and keep the cursor in the white region of the root 

locus plot to see the gain at the desired points at the bottom of the window.  The 

figures are shown here.  
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Assignment: 

1. Show the root locus and the other related plots (including Step  response) generated in 

SISOTOOL GUI in MATLAB for the following OLTFs: 

i.) G(s)H(s)= 
𝐾 (𝑠+2)

(𝑠2+4𝑠+13)
 

ii.) G(s)H(s)= 
𝐾 (𝑠+2)

(𝑠2+4𝑠+13)
 

iii.) G(s)H(s)= 
𝐾 (𝑠2+4𝑠+8)

𝑠2(𝑠+7)
 

iv.) G(s)H(s)= 
𝐾 (𝑠+2)

𝑠 (𝑠+4)(𝑠2+4𝑠+32)
 

v.) G(s)H(s)= 
𝐾 (𝑠2+0.105625)

𝑠(𝑠2+1)
 

vi.) G(s) H(s) = 
s2+6s+8

s2−7s+12
 

2. For the OLTF, G(s)H(s)= 
𝐾 𝑠(𝑠+3.75)

(𝑠2+3.75𝑠+13)
, show the root locus and other other related 

plots(including Step  response) generated in SISOTOOL GUI in MATLAB. Modify the 

root locus to meet a design requirement of 2s settling time (2%) and show the plots 

(including Step  response). 

 

 

 

 

 

 
 

  



39 
 

Experiment No:7  

Name of the Experiment: Modelling of circuit using root locus and study of lead & 

lag Compensator  

Objectives: 

a) Design of closed loop circuits to meet specific design criteria using root locus 

method. 

b) Improve the design with the help of lag/lead compensator. 

 

Theory: 

 A closed loop system is given as follows: 

  

If the system has an OLTF of 𝐆(𝐬)𝐇(𝐬) =
𝑺+𝟏

𝒔(𝒔+𝟐)
 , it can be deduced that the system has a gain,k=1, 

zero at -1 and two poles situated at S1=0 & S2= -2. The system may be expressed as: 

 

The adder block can be designed with the help of a differential amplifier, the 
𝟏

𝑺
 block with an integrator, 

the 
𝟏

𝑺+𝟐
 with the help of an integrator having shifted pole and the s+1 block with a shifted zero.  

If R1=R2=R3=R4 then Vout=V2-V1. 

R(t) 
Y(t) 

𝟏

𝑺
 

𝟏

𝑺 + 𝟐
 S+1 
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For the integrator circuit above the transfer function is 
𝑽𝒐(𝒔)

𝑽𝒊𝒏(𝒔)
=

−
𝟏

𝑹𝟏𝑪𝟏

𝑺
 , Thus if we adjust the value R1 & 

C1 such that 
𝟏

𝑹𝟏𝑪𝟏

= 𝟏 (e.g. R1=100K, C1=10µF) then the TF becomes -1/S. The negative sign can be 

eliminated with the help of an inverting amplifier. 

 

  

 

For design of 
𝟏

𝑺+𝟐
 block, the above circuit (Fig. Shifted pole) may be implemented. The TF of the circuit 

is 
𝑽𝒐(𝒔)

𝑽𝒊𝒏(𝒔)
=

−
𝟏

𝑹𝟏𝑪𝟏

𝑺+
𝟏

𝑹𝟐𝑪𝟏

 .Thus by adjusting R1C1 the numerator can be made to be 1 and by adjusting C1 S+2 

is attained such that 
𝟏

𝑹𝟐𝑪𝟏
= 𝟐. 

For design of shifted Zeros, the circuit (Fig. Shifted zero) can be implemented. The TF of the circuit is 
𝒗𝒐(𝒔)

𝒗𝒊𝒏(𝒔)
= −𝑹𝟐𝑪𝟏 (𝒔 +

𝟏

𝑹𝟏𝑪𝟏
) . Here R2C1 is adjusted to control the gain and 

𝟏

𝑹𝟏𝑪𝟏
 to maintain the shifted 

zero position. 

R1

-Vcc

+Vcc

Vo

C1

Vin

Fig. :Integrator circuit 

R1

-Vcc

+Vcc

Vo

C1

R2

R1

-Vcc

+Vcc

Vo
C1

R2

Fig. :Shifted Pole 

Fig. : Shifted zero 

Vin 

Vin 
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Thus the overall system can be shown as : 

Design from root locus: As seen from the previous experiment some design criteria may need to be met 

(e.g.40% O.S. & Ts=5s). Thus a second order system with O.L.T.F., 
𝑽𝒐

𝑽𝒊
=

𝑲

𝑺(𝑺+𝒂)
 by obtaining ‘K’ and 

‘a’ from sisotool and then design the circuit using op-amp in practical field or in Simulink environment. 

Updating the design using lead/lag compensator:  

Sometimes it may be necessary to update the system without changing the system parameters. This can 

be done with the help of compensators. For instance, the design with 40% O.S and 5s Ts have a gain 

factor of around k=8 and a=1.6. If this system is to be updated to 20% O.S. and 10s Ts without changing 

system parameters, then a zero located at -1.6 can be used to compensate the original pole and a new 

pole can be added and adjusted to meet the new design criteria. 

Experimental Setup: 

Setup 1: Design with root locus (40% O.S. Ts=5s) 

 

 

 

R

-Vcc

+Vcc

Vin
R

R

R

R1

-Vcc

+Vcc

C1

R3

-Vcc

+Vcc

C2

R4

R5

-Vcc

+Vcc

Vo
C3

R6

Figure: Setup 01 

Fig. :Op-amp representation of the block diagram 
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Setup 2: Design with compensator (20% O.S. Ts=10s) 

Data table: 

Setup 1: For 40% O.S. & Ts=5s ,Damping factor, ζ=  Natural Freq. Wn= 

From sisotool Gain,K=  shifted pole (s+a), a= 

For Simulink design calculated  R1=  C1=  R2=  C2= 

     Rf=   

Setup 2: For 20% O.S. & Ts=10s ,Damping factor, ζ=  Natural Freq. Wn= 

From sistool Gain,Knew=  Knew=Kold*new gain factor shifted pole (s+b), b= 

For Simulink design calculated  Rf2=  C4=  Rf3=  C3= 

     Rf1=  R3= 

Assignment: 

1) Design a second order system using root locus such that %O.S.=30% and Rise time,Tr=2s in 

Simulink environment. 

2) Update the previous design without changing the original system so that the new % O.S= 20% and 

Tr=4s. 

 

 

 

 

 

 

 

 

 

 

 

Figure : Setup 02 
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Experiment No: 08 

Name of the Experiment: Control of a conveyor system using Programmable 

Logic Controller (PLC) 

Introduction: 

In industry, many manufacturing process demand a sequence of operation which are to be 

performed repetitively. Early automation systems were mechanical in design, timing and 

sequencing being affected by gears and cams. Slowly these design concepts were 

replaced by electrical drives which were controlled by relays. Even these days the relay 

control has not yet been obsolete rather is favorite to the engineers in many industries 

who understand a process and its cont better using Relay Ladder diagram.. However, the 

relays suffer from a number of problems viz: large size, slower operation, contact wear, 

inability to accept more than one input simultaneously, and the necessity of replacing the 

whole control panel in case another set of operation different from those for which the 

relay are hard wired are to be performed. 

The Programmable Logic Controller 

The necessity of controlling ever increasing systems, engineers turned to computers. The 

computer however was not suited to the industrial environment and the use of the 

computer on the factory floor, was not possible, unless costly interfacing filtering was 

used. 

A programmable logic controller is a. solid-state device, designed to operate in a noisy 

environment and perform all the logic function previously achieved using 

electromechanical relays, drum switches, mechanical timers and counters. 

Basic PLC Operation: 

Figure below shows how the PLC controls a machine or plant. 
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The PLC System: 

The PLC, like a computer employs a microprocessor chip to do processing and memory 

chips to store the program. 

The PLC consists of three sections: 

1. A processor. 

2. Inputl0utput (110). 

3. A programming unit. 

The inputs and outputs are connected via interface. 

Basic PLC architecture: 

Figure below shows the basic architecture of a PLC. It contains a processor 

(microprocessor chips), memory chips and an arithmetic logic unit (ALU). It also 

contains all the input and output interfacing. The programming device either hand held, 

dedicated terminal of desktop, are remote from the PLC controller. 

Table 1 to 3 show the connection that should be made between the PC45 trainer, 

MicroLogix 1500 PLC and Sequence Switch Module in order to complete the 

programming exercise. 
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Table 2: 

Table 3: 

Table 1: 

PLC Input Addresses PC45 Connection Description 

I0 SWG Green Push Button 

I1 SWR Red Push Button 

I2 S1 Sensor 1 

I3 S2 Sensor 2 

I4 R1 Micro Switch 1 

I5 R2 Micro Switch 2 

I6 R3 Micro Switch 3 

 

PLC Input Addresses PC45 Connection Description 

O4 E Conveyor (Forward) 

O5 R Conveyor (Backward) 

O6 LG Green Lamp 

O7 LR Red Lamp 

O8 C1 Cylinder 1 

O9 C2 Cylinder 2 

O10 C3 Cylinder 3 

 

PLC Input Addresses Switch Sequence Module 

Connection 
Description 

I1 S1 Switch 1 

I8 S2 Switch 2 

I9 S3 Switch 3 

Other Connections: 

DC COMMO and DCCOM1 are shorted and connected to 0 volt of upper block. 

VAC VVDC4 and VAC DC5 are shorted and connection to 0 volt of lower block. 

Vsw of sequence switch module to be connected to 24 volt of lower block. 
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Note: 

When the cylinders of the PC45 Trainer are used, you will need to have the hand 

compressor pump connected. 

As the cylinders on the PC45n Trainer are operated, air pressure drops in the hand 

compressor, so additional air will need to be pumped in as the system is used. 

1. Short component should move the full length of the conveyor, being rejected by 

falling of the far end. 

2. If the red push button is pressed, the conveyor should stop and the red lamp 

should lit. 

3. Pressing green push button again should start the conveyor. 

[Note: Before running the program make sure that the sensors are properly adjusted. The 

transmitter and receiver of the sensors should be aligned properly for accurate operation. 

The voltage between S1 br S2 arid 0 V should be around 23 volts if they are adjusted 

properly. Check the voltage of S1 and S2 in upper block and adjust the sensors if 

necessary.] 

Procedures: 

PART 1 To run the conveyor in forward and backward direction. 

1. Open the RSLogix programming software by the following instruction. 

Start All Programs Rockwell Software RSLogix500English  

RSLogix500English. 

2. Open a new project. You will get a window with a list of processor name. Select a 

processor of Bul.1764 LSP Series C by scrolling down. A window will appear to 

develop the ladder logic diagram. 

3. Develop the ladder logic diagram as instructed and save it properly. 

4. Now you have to download the file. To download the file click on the drop-down 

arrow of the top-left dialogue box appearing offline and select download option. 

Before downloading the file make sure that the MicroLogixl500 PLC and the 

PC45 trainer is switched on. 

5. When the program has been downloaded, you will be asked if you want to go 

online. Click yes to go online. 

6. The top left dialogue box will change color and read REMOTE PROG. Click on 

the down arrow to the right of this and select Run from the drop down menu. 

Click on yes to change to run mode. 

7. Place the green push button to run the conveyor in forward direction. Press the 

Red push button to stop the conveyor. 
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8. Place the object at the right most position of the conveyor. When sensor 2 gets the object 

the conveyor should run in backward direction and it will continue to run in the backward 

direction unless you reprogram it. 

9. Modify Rung 03 of the ladder logic diagram as suggested and observe the movement 

of conveyor after sensing the object at sensor 2. The conveyor should run back and forth 

with the movement of the object in between sensor 1 and 2. 

10. To bring the program out of Run mode, click on the down arrow button to the right of 

the top left dialogue box and select program, then click on yes to return to program mode. 

11. Click on the file menu and select close to close the project. Now you are safe to exit the 

programming software. 

12. Remove the power from MicroLogix 1500 PLC and PC45 trainer. 

PART 2: To distinguish tall object from short object placed on a running conveyor. In this 

part the program should perform the following operation. 

1. The Green push button should be used to start the conveyor in the forward, right to left 

direction. 

2. While the conveyor is operating, the green lamp should be lit. 

3. Use sensor 1 on the conveyor to determine if a component is tall or short. (Should be set 

to detect a tall component) 

4. Sensor 2 on the conveyor is used to start timing for either a tall component or a short 

component. (Should be set to detect all components) 

5. Cylinder 2 (the center cylinder) is operated when a tall reaches it. (Remember that micro 

switch 2 is activated when cylinder 2 is operated) 

Report: 

Explain the Logic of the ladder diagrams programmed in both parts. 
 


