
MS SQL 2008 EXPRESS INSTALLATION GUIDE: PREPARED BY NAZMUS SAKIB, ASSISTANT PROFESSOR, CSE, AUST

1

Install SQL Server 2008 Express(Including Management Studio)
Microsoft SQL Server 2008 Express with Tools is a free, easy-to-use version of the SQL Server
Express data platform that includes the graphical management tool: SQL Server Management
Studio (SMSS) Express. SQL Server 2008 Express provides rich features, data protection, and fast
performance. It is ideal for small server applications and local data stores.
Steps:
1. On the left column, click on "Installation" Then click on the first link: "new SQL Server stand-
alone installation"

MS SQL 2008 EXPRESS INSTALLATION GUIDE: PREPARED BY NAZMUS SAKIB, ASSISTANT PROFESSOR, CSE, AUST

2

2. Setup support rules reopen. Once all operations completed, click OK

3. The SQL Server 2008 Setup opens with a first "product key" tab As we use a specific free version
of SQL Server, no activation key is needed. Simply click "next"

MS SQL 2008 EXPRESS INSTALLATION GUIDE: PREPARED BY NAZMUS SAKIB, ASSISTANT PROFESSOR, CSE, AUST

3

4. Check the box "I accept the licence terms" Click on "Next"

5. The "setup support files" tab opens. Click on "install"

MS SQL 2008 EXPRESS INSTALLATION GUIDE: PREPARED BY NAZMUS SAKIB, ASSISTANT PROFESSOR, CSE, AUST

4

6. Once installed, the Setup Support Rules reopen. Check that all operation passsed, then click
"next"

7. On the "features selection" tab choose "Data Engine Services" and "Management tools" (this is the
Management Studio Express)check the features directory (no need to change normally) click "next"

MS SQL 2008 EXPRESS INSTALLATION GUIDE: PREPARED BY NAZMUS SAKIB, ASSISTANT PROFESSOR, CSE, AUST

5

8. On the "instance Configuration" check that the parameters are like the screenshot on the left
(nothing to change normally) click "Next"

9. Disk space requirements tap -> Click Next

MS SQL 2008 EXPRESS INSTALLATION GUIDE: PREPARED BY NAZMUS SAKIB, ASSISTANT PROFESSOR, CSE, AUST

6

10. Server Configuration:
For the first service "SQL Server Database Engine", on the account name, choose the first result of
the listbox (in our case NT AUTHORITY\NETWORK). Then click "Next".

11. Database Engine Configuration:

 Chose "Mixed mode" and Enter the password : p@ssword13  Specify SQL Server administrator : Click on "add current user". Click "Next".

MS SQL 2008 EXPRESS INSTALLATION GUIDE: PREPARED BY NAZMUS SAKIB, ASSISTANT PROFESSOR, CSE, AUST

7

12. Error and Usage Reporting. Click next.

13. Installation Rules : Once Operation completed, click "Next"

MS SQL 2008 EXPRESS INSTALLATION GUIDE: PREPARED BY NAZMUS SAKIB, ASSISTANT PROFESSOR, CSE, AUST

8

14. Ready to install: Click "Install"

15. Installation Progress: Wait until Installation is finished.Ensure "Database Engine Services" and
"Management Tools Basic" are successfully installed. Click "Next".

MS SQL 2008 EXPRESS INSTALLATION GUIDE: PREPARED BY NAZMUS SAKIB, ASSISTANT PROFESSOR, CSE, AUST

9

16. Complete: Once installed, click on "Close"

17. To ensure SQL Express is running correctly, run "SQL Server Configuration Manager" On the left
column click on "SQL Server Services On the right column, ensure that SQL Server (SQLEXPRESS) is
running correctly (otherwise right-click on the device to start it)

MS SQL 2008 EXPRESS INSTALLATION GUIDE: PREPARED BY NAZMUS SAKIB, ASSISTANT PROFESSOR, CSE, AUST

10

18. The SQL Server Connection Windows appears.
Choose the following parameters:

 Server Type: Database Engine
 Server Name: (Name of your computer)\SQLEXPRESS*
 Authentication: SQL Server Authentication (if you can only see windows authentication, you

probably missed to choose "Mixed Mode" at the Database Engine Configuration step
 Login: sa (by default)
 Password: the password you defined at the Database Engine Configuration step

(p@ssword13)
 You can find the name of your computer on the control panel>System

Database Lab
CSE 3104

 Lab-02

1 Introduction to SQL

SQL (Structured Query Language) is a database computer language designed for managing

data in relational database management systems (RDBMS).

SQL is a standardized computer language that was originally developed by IBM for querying,

altering and defining relational databases, using declarative statements.

What can SQL do?

• SQL can execute queries against a database

• SQL can retrieve data from a database

• SQL can insert records in a database

• SQL can update records in a database

• SQL can delete records from a database

• SQL can create new databases

• SQL can create new tables in a database

• SQL can create stored procedures in a database

• SQL can create views in a database

• SQL can set permissions on tables, procedures, and views

Even if SQL is a standard, many of the database systems that exist today implement their own

version of the SQL language. In this document we will use the Microsoft SQL Server as an

example.

There are lots of different database systems, or DBMS–Database Management Systems, such

as:

• Microsoft SQL Server

o Enterprise, Developer versions, etc

o Express version is free of charge

• Oracle

• MySQL (Oracle, previously Sun Microsystems)- MySQL can be used free of charge (open

source license), Web sites that use MySQL: YouTube, Wikipedia, Facebook

• Microsoft Access

• IBM DB2

• Sybase

• … lots of other systems

1.1 Data Definition Language (DDL)

1.2 Data Manipulation Language (DML)

2 Introduction to SQL Server

2.1 SQL Server Management Studio

2.1.1 Create a new Database

2.1.2 Queries

Note: You may also use the SQL language to create a new database, but sometimes it is

easier to just use the built-in features in the Management Studio.

3 CREATE TABLE

Example: We want to create a table called “CUSTOMER” which has the following columns

and data types:

CREATE TABLE CUSTOMER

(

CustomerId int IDENTITY(1,1) PRIMARY KEY,

LastName varchar(50) NOT NULL,

FirstName varchar(50) NOT NULL,

AreaCode int NULL,

Address varchar(200) NULL,

Phone varchar(11) NULL,

)

3.2 Create Tables using the Designer Tools

4 INSERT INTO

Example:

The second form specifies both the column names and the values to be inserted:

This form is recommended!

Insert Data Only in Specified Columns:

It is also possible to only add data in specific columns.

INSERT INTO table_name

VALUES (value1, value2, value3,...)

INSERT INTO CUSTOMER

VALUES ('Rahman', 'Karim', 1203, 'Dhaka','01912584949')

INSERT INTO table_name (column1, column2, column3,...)

VALUES (value1, value2, value3,...)

5 ALTER TABLE

6 SQL Constraints

6.1 PRIMARY KEY

CREATE TABLE CUSTOMER

(

CustomerId int IDENTITY(1,1) PRIMARY KEY,

LastName varchar(50) NOT NULL,

FirstName varchar(50) NOT NULL,

AreaCode int NULL,

Address varchar(200) NULL,

Phone varchar(11) NULL,

)

6.2 AUTO INCREMENT or IDENTITY

Very often we would like the value of the primary key field to be created automatically every

time a new record is inserted.

As shown below, we use the IDENTITY () for this. IDENTITY (1, 1) means the first

value will be 1 and then it will increment by 1.

CREATE TABLE CUSTOMER

(

CustomerId int IDENTITY(1,1) PRIMARY KEY,

LastName varchar(50) NOT NULL,

FirstName varchar(50) NOT NULL,

AreaCode int NULL,

Address varchar(200) NULL,

Phone varchar(11) NULL,

)

Database Lab
CSE 3104

 Lab-03

6 SQL Constraints

6.3 FOREIGN KEY

A FOREIGN KEY in one table points to a PRIMARY KEY in another table.

Example:

At First create a table called ORDER using the following Query.

CREATE TABLE ORDER

(

OrderId int IDENTITY (1, 1) PRIMARY KEY,

CustomerId int NOT NULL FOREIGN KEY REFERENCES CUSTOMER (CustomerId),

OrderDate date NULL,

OrderAmount money NULL,

)

6.4 UNIQUE

CREATE TABLE CUSTOMER

(

 CustomerId int IDENTITY(1,1) PRIMARY KEY,

CustomerNumber int NOT NULL UNIQUE ,

LastName varchar(50) NOT NULL,

FirstName varchar(50) NOT NULL,

)

6.5 CHECK

In this case, when we try to insert a Customer Number less than zero we will get

an error message.

6.5 DEFAULT

CREATE TABLE CUSTOMER

(

 CustomerId int IDENTITY(1,1) PRIMARY KEY,

CustomerNumber int NOT NULL UNIQUE CHECK(CustomerNumber>1000),

LastName varchar(50) NOT NULL,

FirstName varchar(50) NOT NULL,

)

7 UPDATE

Note: If you don’t include the WHERE clause then result becomes updated to all

records. So make sure to include the WHERE clause when usingthe UPDATE

command!

CREATE TABLE CUSTOMER

(

CustomerId int IDENTITY(1,1) PRIMARY KEY,

CustomerNumber int NOT NULL UNIQUE CHECK(CustomerNumber>1000),

LastName varchar(50) NOT NULL,

FirstName varchar(50) NOT NULL,

AreaCode int NULL,

Address varchar(200) NULL DEFAULT ‘Dhaka’,

Phone varchar(11) NULL,

)

 UPDATE CUSTOMER set AreaCode=46 where CustomerId=2

8 DELETE

9 SELECT

10 The ORDER BY Keyword

11 SELECT DISTINCT

12 The WHERE Clause

13 Operators

Database Lab
CSE 3104

 Lab-04

13 Operators

13.1 LIKE Operator

The SQL LIKE clause is used to compare a value to similar values using wildcard operators. There

are two wildcards used in conjunction with the LIKE operator:

The percent sign (%)

The underscore (_)

The percent sign represents zero, one, or multiple characters. The underscore represents a

single number or character. The symbols can be used in combinations.

Following is an example, which would display all the records from CUSTOMER table where

SALARY starts with 200.

SELECT * FROM CUSTOMER WHERE SALARY LIKE '200%'

You may also combine with the NOT keyword.(Logical Negation) The NOT operator reverses the

meaning of the logical operator with which it is used. Eg: NOT EXISTS, NOT BETWEEN, NOT IN,

etc. This is a negate operator.

13.2 IN Operator

13.3 BETWEEN Operator

SELECT * FROM CUSTOMER WHERE SALARY NOT LIKE '200%'

SELECT * FROM CUSTOMER WHERE AGE IN (25, 27)

SELECT * FROM CUSTOMER WHERE AGE BETWEEN 23 AND 27

13.4 AND & OR Operators

You can also combine AND and OR (use parenthesis to form complex expressions).

14 SELECT TOP Clause

SELECT * FROM CUSTOMER WHERE AGE >= 25 AND SALARY >= 6500

SELECT * FROM CUSTOMER WHERE AGE >= 25 OR SALARY >= 6500

SELECT * FROM CUSTOMER WHERE NAME LIKE 'Ka%' AND (AGE >= 25 OR SALARY >= 6500)

SELECT TOP 3 * from CUSTOMER

SELECT TOP 60 percent * from CUSTOMER

15 Built-in Functions

16 The Group By Statement

 GROUP BY clause is used in collaboration with the SELECT statement to arrange

identical data into groups.

If we try the following:

We will get the following error message

Msg 8120, Level 16, State 1, Line 1

Column 'CUSTOMER.Age' is invalid in the select list because it is not

contained in either an aggregate function or the GROUP BY clause.

The solution is to use GROUP BY:

SELECT Age, MAX(Salary) FROM CUSTOMER

SELECT Age, MAX(Salary) FROM CUSTOMER GROUP BY Age

17 The Having Clause

If we try the following:

We will get the following error message

Msg 8121, Level 16, State 1, Line 1

Column 'CUSTOMER.Name' is invalid in the HAVING clause because it is not

contained in either an aggregate function or the GROUP BY clause.

SELECT Age, MAX(Salary) FROM CUSTOMER GROUP BY Age HAVING NAME LIKE 'Ka%'

SELECT Age, MAX(Salary) FROM CUSTOMER GROUP BY Age HAVING Age >=25

Database Lab
CSE 3104

 Lab-05

5 Joins

5.1 Different SQL Joins

5.2 Join Operations

Consider the CUSTOMER and ORDERS table

Now, let us join these two tables in our SELECT statement as follows:

Here, it is noticeable that the join is performed in the WHERE clause. Several operators can

be used to join tables, such as =, <, >, <>, <=, >=,! =, BETWEEN, LIKE, and NOT; they can all

be used to join tables. However, the most common operator is the equal symbol.

SELECT CUSTOMER.CustomerId , Name, Age, Amount

FROM CUSTOMER, ORDERS

WHERE CUSTOMER.CustomerId = ORDERS.CustomerId

5.2.1 Inner Join

The most frequently used and important of the joins is the INNER JOIN. They are also

referred to as an EQUIJOIN.

The INNER JOIN creates a new result table by combining column values of two tables

(table1 and table2) based upon the join-predicate. The query compares each row of table1

with each row of table2 to find all pairs of rows which satisfy the join-predicate. When the

join-predicate is satisfied, column values for each matched pair of rows of A and B are

combined into a result row.

The basic syntax of INNER JOIN is as follows:

5.2.2 Left Join

The SQL LEFT JOIN returns all rows from the left table, even if there are no matches in the

right table. This means that if the ON clause matches 0 (zero) records in right table, the join

will still return a row in the result, but with NULL in each column from right table.

This means that a left join returns all the values from the left table, plus matched values

from the right table or NULL in case of no matching join predicate.

SELECT CUSTOMER.CustomerId , Name, Age,

Amount,Date

FROM CUSTOMER

INNER JOIN ORDERS

ON CUSTOMER.CustomerId = ORDERS.CustomerId

The basic syntax of LEFT JOIN is as follows:

5.2.3 Right Join

The SQL RIGHT JOIN returns all rows from the right table, even if there are no

matches in the left table. This means that if the ON clause matches 0 (zero) records in left

table, the join will still return a row in the result, but with NULL in each column from left

table.

This means that a right join returns all the values from the right table, plus matched values

from the left table or NULL in case of no matching join predicate.

The basic syntax of RIGHT JOIN is as follows:

SELECT CUSTOMER.CustomerId , Name, Age,

Amount,Date

FROM CUSTOMER

LEFT JOIN ORDERS

ON CUSTOMER.CustomerId = ORDERS.CustomerId

SELECT CUSTOMER.CustomerId , Name, Age,

Amount,Date

FROM CUSTOMER

RIGHT JOIN ORDERS

ON CUSTOMER.CustomerId = ORDERS.CustomerId

5.2.3 Full Join

The SQL FULL JOIN combines the results of both left and right outer joins.

The joined table will contain all records from both tables, and fill in NULLs for missing

matches on either side.

6 SQL Sub Queries

A Subquery or Inner query or Nested query is a query within another SQL query and

embedded within the WHERE clause.

A subquery is used to return data that will be used in the main query as a condition to

further restrict the data to be retrieved.

Subqueries can be used with the SELECT, INSERT, UPDATE, and DELETE statements along

with the operators like =, <, >, >=, <=, IN, BETWEEN etc.

There are a few rules that subqueries must follow:

 Subqueries must be enclosed within parentheses.

 A subquery can have only one column in the SELECT clause, unless multiple columns are

in the main query for the subquery to compare its selected columns.

An ORDER BY cannot be used in a subquery, although the main query can use an ORDER

BY. The GROUP BY can be used to perform the same function as the ORDER BY in a

subquery.

Subqueries that return more than one row can only be used with multiple value

operators, such as the IN operator.

A subquery cannot be immediately enclosed in a set function.

The BETWEEN operator cannot be used with a subquery; however, the BETWEEN

operator can be used within the subquery.

Subqueries with the SELECT Statement:

At first try with the following:

This will show an error message like:

Msg 512, Level 16, State 1, Line 1

Subquery returned more than 1 value. This is not permitted when the subquery

follows =, !=, <, <= , >, >= or when the subquery is used as an expression.

Correct form is:

Note: Sub queries also can be performed on multiple tables.

Subqueries with the INSERT Statement:

Subqueries also can be used with INSERT statements. The INSERT statement uses the data

returned from the subquery to insert into another table. The selected data in the subquery

can be modified with any of the character, date or number functions.

SELECT *

FROM CUSTOMER

WHERE CustomerId = (SELECT CustomerId

FROM CUSTOMER

WHERE Salary > 4500)

SELECT *

FROM CUSTOMER

WHERE CustomerId IN (SELECT CustomerId

FROM CUSTOMER

WHERE Salary> 4500)

Consider a table CUSTOMER_BKP with similar structure as CUSTOMER table. Now to copy

complete CUSTOMER table into CUSTOMERS_BKP, following is the query:

Subqueries with the UPDATE Statement:

The subquery can be used in conjunction with the UPDATE statement. Either single or

multiple columns in a table can be updated when using a subquery with the UPDATE

statement.

Following example updates SALARY by 0.25 times in CUSTOMER table for all the customers

whose AGE is greater than or equal to 27:

Subqueries with the DELETE Statement:

The subquery can be used in conjunction with the DELETE statement like with any other

statements mentioned above.

INSERT INTO CUSTOMER_BKP

SELECT Name,Age,Address,Salary FROM CUSTOMER

WHERE CustomerId IN (SELECT CustomerId

FROM CUSTOMER)

UPDATE CUSTOMER

SET SALARY = SALARY * 0.25

WHERE AGE IN (SELECT AGE FROM CUSTOMER_BKP

WHERE AGE >= 27)

UPDATE CUSTOMER

SET SALARY = SALARY * 0.25

WHERE AGE IN (SELECT AGE FROM CUSTOMER_BKP

WHERE AGE >= 27)

Practice Session:

1. List Product ID , Product Name , Product Type Name of all products .

2. Show all product information along with Product Type Name that has a price

greater than $29.95(use alias)

3. List all the last name of the customers, Order IDs and Product Name in customer

name order.(all of the products a given customer has ordered)

4. Show those orders which have product ID = 3.

Database Lab
CSE 3104

 Lab-07

7.1 SQL DROP COMMAND

DROP command completely removes a table from a database. This command will also

destroy the table structure. Also a database can be drop with this command.

Basic Structure-

DROP TABLE "table_name"

DROP DATABASE DatabaseName;

Example-

DROP TABLE COURSE

DROP DATABASE EMPLOYEE

NOTE: You can also DROP multiple by using comma (,)

7.2 SQL TRUNCATE COMMAND

To remove all the rows from a table, the TRUNCATE command is used. TRUNCATE deletes

all the rows, but the table structure remains the same. TRUNCATE is a DDL command.

When we apply Truncate command on a table then its PRIMARY KEY is initialized.

Basic Structure-

TRUNCATE TABLE "table_name"

Example-

TRUNCATE TABLE STUDENT

NOTE: TRUNCATE & DELETE commands are not same. Delete command will delete all the

rows from a table where as Truncate command re-initializes a table.

7.3 SQL UNION

The SQL UNION operator is used to combine the result sets of 2 or more SELECT

statements. It removes duplicate rows between the various SELECT statements.

Each SELECT statement within the UNION must have the same number of fields in the result

sets with similar data types, also same order, but they do not have to be the same length.

Basic Structure-

SELECT column_name(s) FROM table1

UNION

SELECT column_name(s) FROM table2

Example-

7.4 SQL UNION ALL

Same as UNION. The purpose of the SQL UNION ALL command is to combine the results of

two queries together.

UNION and UNION ALL both combine the results of two SQL queries. The difference is that,

while UNION only selects distinct values, UNION ALL selects all values.

Basic Structure-

SELECT column_name(s) FROM table1

UNION ALL

SELECT column_name(s) FROM table2

Example-

7.5 SQL INTERSECT

The SQL INTERSECT clause/operator is used to combine two SELECT statements, but returns

rows only from the first SELECT statement that are identical to a row in the second SELECT

statement. This means INTERSECT returns only common rows returned by the two SELECT

statements.

Just as with the UNION operator, the same rules apply when using the INTERSECT operator.

Basic Structure-

SELECT column_name(s)

FROM table

INTERSECT

SELECT column_name(s)

FROM table

Example-

7.5 SQL EXCEPT

The EXCEPT command operates on two SQL statements. It takes all the results from the first

SQL statement, and then subtract out the ones that are present in the second SQL

statement to get the final answer. If the second SQL statement includes results not

present in the first SQL statement, such results are ignored.

Each SELECT statement within the EXCEPT query must have the same number of fields in

the result sets with similar data types.

Basic Structure-

SELECT column_name(s)

FROM table

MINUS

SELECT column_name(s)

FROM table

Example-

7.6 ANY, ALL with a Multiple Row Sub query:

Both are used for comparing one value against a set of values. ALL specifies that all the

values given in the list should be taken into account, whereas ANY specifies that the

condition is satisfied when any of the values satisfies the condition.

The operator can be any one of the standard relational operators (=, >=, >, <, <=, !=) , and

list is a series of values.

operator ANY list

operator ALL list

The ANY keyword denotes that the search condition is TRUE if the comparison is TRUE for at

least one of the values that is returned. If the subquery returns no value, the search

condition is FALSE. The SOME keyword is a synonym for ANY.

Example-

The ALL keyword specifies that the search condition is TRUE if the comparison is TRUE for

every value that the subquery returns. If the subquery returns no value, the condition is

FALSE.

Example-

7.7 Using EXISTS, NOT EXISTS with a Subquery:

The EXISTS operator checks if a subquery returns any rows. The following illustrates the

syntax of the EXISTS operator:

WHERE EXISTS (subquery)

The expression EXISTS (subquery) returns TRUE if the subquery returns at least one row,

otherwise it returns FALSE. Notice that you put the subquery inside the parentheses

followed by the EXISTS operator.

NOT operator with the EXISTS operator to inverse the meaning of the EXISTS operator.

WHERE NOT EXISTS (subquery)

The expression NOT EXISTS (subquery) returns TRUE if the subquery returns no row,

otherwise it returns FALSE.

NOTE:

EXISTS is different from other operators like IN,ANY etc., because it doesn’t compare values

of columns, instead, it checks whether any row is retrieved from subquery or not.

Example-

EXISTS

Here in DepartmentId 6 there is no employee, so sub query returns Nothing. For this,

overall outer query shows nothing.

Example-

NOT EXISTS

‘TRY FOR ABOVE QUERY’

SQL STRING FUNCTIONS

Sql string function is a built-in string function.
It perform an operation on a string input value and return a string or numeric value.

Some common sql string functions:

1. LEFT - Returns left part of a string with the specified number of characters.
Syntax-

LEFT (string , integer)
 Example-

2. RIGHT - Returns Right part of a string with the specified number of characters.

Syntax-

RIGHT (string , integer)
Example-

3. SUBSTRING - Returns part of a string.

Syntax-

SUBSTRING (string, startindex , length)
Example-

4. REVERSE - Returns reverse a string.
Syntax-

REVERSE(string)
 Example-

5. CAST - Returns the value of an expression converted to a supplied data type.
Syntax-

 CAST (expression AS [data type])
 Example-

6. CONVERT - Converts a value to another data type. Similar to CAST.
Syntax-

CONVERT (expression, [data type])
 Example-

7. CONCAT - This Keyword not use in SQL, But we can CONCAT two part as –

SQL DATE FUNCTIONS

SQL Server date and time functions are scalar functions that perform an operation on a date
and time input value and returns either a string, numeric, or date and time value.
Some useful Date Functions-

1. DATEADD - Returns a new datetime value based on adding an interval to the
specified date.

Syntax-

 DATEADD (datepart , number, date)
 Example-

2. DATEDIFF - Returns the number of date and time boundaries crossed between two
specified dates.

 Syntax-

 DATEDIFF (datepart , startdate , enddate)
 Example-

3. DATEPART - Returns an integer that represents the specified datepart of the

specified date.
Syntax-

 DATEPART (datepart , date)
 Example-

4. DAY - Returns an integer representing the day datepart of the specified date.
 Syntax-

 DAY (date)
 Example-

 Like DAY Function MONTH, YEAR also hold same structure.

5. The GETDATE function is used to retrieve the current database system time in SQL
Server.
Syntex-

SELECT GETDATE()

Self Study:

Practice all the commands related to today’s class. A practical session will be

conducted at the very beginning of the next lab.

	Lab-01
	Lab-2
	Lab-3
	Lab-04
	Lab-05
	Lab-06

