
Ahsanullah University of Science and Technology (AUST)
Department of Computer Science and Engineering

LABORATORYMANUAL

Course No. : CSE4204
Course Title: Computer Graphics Lab

For the students of 4thYear, 2nd semester of
B.Sc. in Computer Science and Engineering program

Table of Contents

Content Page no.

Course Objective 2

Preferred Tools 2

Reference Books 2

Administrative Policy of the Laboratory 2

Lab 1 – Introduction to Graphics API and Shading Language 3

Lab 2 – Different Qualifiers of GLSL Data Types and Interactive
Computer Graphics

8

Lab 3 – Index Buffer and Transformation Matrices 17

Lab 4 – Perspective and Camera Transformation 22

Lab 5 – Introduction to Three.js 26

Lab 6 – Texture Mapping, Lighting and Animation 31

Mid Term Examination 32

Lab Final Examination 32

Project 32

Page | 1

Course Objective
● Course objectives for the course are -
● Explain the basics of computer graphics and the graphics pipeline
● Apply 2D and 3D linear transformation to perform geometric transformation and

viewing, and different rasterization techniques, shading models and textures
● Design interactive computer graphics systems using the concept of the transformation,

texture mapping and animation
● Analyze different various algorithms used in computer graphics
● Utilize state-of-the-art graphics API and libraries to address computer graphics related

problems
● Adapt communication strategies to effectively convey graphics concepts, project

progress, and outcomes to the appropriate audience

Preferred Tools
1. Language: GLSL (OpenGL Shader Language) and JavaScript

2. API: Modern WebGL (Modern OpenGL ES)
3. Editor: Notepad++, VS Code

Reference Books
Introduction to Computer Graphics (6 January 2018, Version 1.2) by David J. Eck.
[Link: http://math.hws.edu/graphicsbook/index.html]

Administrative Policy of the Laboratory
1. Class assessment tasks must be performed by students individually, without help of

others.

2. Viva for each program will be taken and considered as a performance.
3. Plagiarism is strictly forbidden.

Page | 2

Page | 3

Lab 1 – Introduction to Graphics API and Shading Language

1.1. Objective:

Objectives of this topics are – (1) to learn about graphics APIs, such as OpenGL/ WebGL; (2)

to write a simple program to basic primitives with coordinates and colors; (3) to understand

the basic concepts of shading language and its important parts: vertex and fragment shader;

(4) to understand the basic graphics pipeline.

1.2. The Graphics API – WebGL:

OpenGL is a family of computer graphics APIs that is implemented in many graphics

hardware devices. There are several versions of the API, and there are implementations, or

"bindings" for several different programming languages. Versions of OpenGL for embedded

systems such as mobile phones are known as OpenGL ES. a graphics API that was introduced

in 1992 and has gone through many versions and many changes since then. WebGL is a

version for use on Web pages. OpenGL can be used for 2D as well as for 3D graphics, but it is

most commonly associated with 3D.

WebGL is A 3D graphics API for use on web pages. WebGL programs are written in the

JavaScript programming language and display their images in HTML canvas elements.

WebGL is based on OpenGL ES, the version of OpenGL for embedded systems, with a few

changes to adapt it to the JavaScript language and the Web environment.

1.3. The Graphics Pipeline:

OpenGL 1.1 used a fixed-function pipeline for graphics processing. Data is provided by a

program and passes through a series of processing stages that ultimately produce the pixel

colors seen in the final image. The program can enable and disable some of the steps in the

process, such as the depth test and lighting calculations. But there is no way for it to change

what happens at each stage. The functionality is fixed.

OpenGL 2.0 introduced a programmable pipeline. It is a processing pipeline in which some

of the processing stages can or must be implemented by programs. Data for an image passes

through a sequence of processing stages, with the image as the end product. The sequence is

called a "pipeline." Programmable pipelines are used in modern GPUs to provide more

flexibility and control to the programmer. The programs for a programmable pipeline are

known as shaders and are written in a shader programming language such as GLSL. It

Page | 4

became possible for the programmer to replace certain stages in the pipeline with their own

programs. This gives the programmer complete control over what happens at that stage. In

OpenGL 2.0, the programmability was optional; the complete fixed-function pipeline was still

available for programs that didn't need the flexibility of programmability. WebGL uses a

programmable pipeline, and it is mandatory. There is no way to use WebGL without writing

programs to implement part of the graphics processing pipeline.

Figure 1.1: Source: Difference between OpenGL, OpenGL ES and WebGL. (source:

https://ict.senecacollege.ca/~chris.szalwinski/archives/gam670.071/content/shadr_p.html)

The programs that are written as part of the pipeline are called shaders. For WebGL, you

need to write a vertex shader, which is called once for each vertex in a primitive, and a

fragment shader, which is called once for each pixel in the primitive. Aside from these two

programmable stages, the WebGL pipeline also contains several stages from the original

fixed-function pipeline. For example, the depth test is still part of the fixed functionality, and

it can be enabled or disabled in WebGL in the same way as in OpenGL 1.1.

1.3.1. Vertex Shader: A shader program that will be executed once for each vertex in a

primitive. A vertex shader must compute the vertex coordinates in the clip coordinate

system. It can also compute other properties, such as color.

1.3.2. Fragment Shader: A shader program that will be executed once for each pixel in a

primitive. A fragment shader must compute a color for the pixel, or discard it. Fragment

shaders are also called pixel shaders.

1.4. A Graphics Program:

There are two sides to any WebGL program:

Part – 1: written in JavaScript

Part – 2: written in GLSL, a language for writing "shader" programs that run on the GPU.

https://ict.senecacollege.ca/~chris.szalwinski/archives/gam670.071/content/shadr_p.html

Page | 5

Figure 1.2: Parts of a WebGL program. (source:

https://www.tutorialspoint.com/webgl/webgl_quick_guide.htm)

1.4.1. Standard steps for a WebGL program: A basic WebGL program follows the basic

steps as listed below.

Step 1 − Prepare the canvas and get WebGL rendering context

Step 2 − Create and compile Shader programs

Step 3 − Associate the shader programs with buffer objects

Step 4 − Define the geometry and store it in buffer objects

Step 5 − Drawing the required object

Code: 1.1. Sample Code for drawing a triangle

<!-- saved from url=(0065)http://math.hws.edu/graphicsbook/source/webgl/simple-texture.html --

><!-- modified by Mohammad Imrul Jubair -->

<html>

<title>LAB-1: Intro</title>

<canvas id="webglcanvas" width="500" height="500"></canvas>

<script>

 var canvas = document.getElementById("webglcanvas");

 var gl = canvas.getContext("webgl");

 var vertexShaderSource =

 `attribute vec3 a_coords;

 void main() {

 gl_Position = vec4(a_coords, 1.0);

 }`;

 var fragmentShaderSource =

 `void main() {

 gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);

 }`;

https://www.tutorialspoint.com/webgl/webgl_quick_guide.htm

Page | 6

 var vsh = gl.createShader(gl.VERTEX_SHADER);

 gl.shaderSource(vsh, vertexShaderSource);

 gl.compileShader(vsh);

 var fsh = gl.createShader(gl.FRAGMENT_SHADER);

 gl.shaderSource(fsh, fragmentShaderSource);

 gl.compileShader(fsh);

 var prog = gl.createProgram();

 gl.attachShader(prog, vsh);

 gl.attachShader(prog, fsh);

 gl.linkProgram(prog);

 gl.useProgram(prog);

 var a_coords_location = gl.getAttribLocation(prog, "a_coords");

 var coords = new Float32Array([0.0, 0.0, 0.0,

 0.0, 0.5, 0.0,

 0.5, 0.0, 0.0]);

 var a_coords_buffer = gl.createBuffer();

 gl.bindBuffer(gl.ARRAY_BUFFER, a_coords_buffer);

 gl.bufferData(gl.ARRAY_BUFFER, coords, gl.STATIC_DRAW);

 gl.vertexAttribPointer(a_coords_location, 3, gl.FLOAT, false, 0, 0);

 gl.enableVertexAttribArray(a_coords_location);

 gl.clearColor(0.75, 0.75, 0.75, 1.0);

 gl.clear(gl.COLOR_BUFFER_BIT);

 gl.drawArrays(gl.TRIANGLES, 0, 3);

</script></html>

Output:

Page | 7

1.5. Task:

a) Write a program to draw quad using two triangles.

b) Write a program that utilizes different drawing primitives to draw a multiple

triangle.

Page | 8

Lab 2 – Different Qualifiers of GLSL Data Types and Interactive

Computer Graphics

2.1. Objective:

Objective of the topics is to learn (1) different types of data used in GLSL such as attribute,

uniform and varying; (2) implementing mouse interaction in WebGL.

2.2. Data Flow in the Graphics Pipeline:

The JavaScript side of the program sends values for attributes and uniform variables to the

GPU and then issues a command to draw a primitive. The GPU executes the vertex shader

once for each vertex. The vertex shader can use the values of attributes and uniforms. It

assigns values to gl_Position and to any varying variables that exist in the shader. After

clipping, rasterization, and interpolation, the GPU executes the fragment shader once for

each pixel in the primitive. The fragment shader can use the values of varying variables,

uniform variables, and gl_FragCoord. It computes a value for gl_FragColor. The following

diagram summarizes the flow of data:

Figure 2.1: Data flow in Graphics Pipeline. (source:

http://math.hws.edu/graphicsbook/c6/s1.html#webgl.1.5)

2.3. Attribute

http://math.hws.edu/graphicsbook/c6/s1.html#webgl.1.5

Page | 9

An attribute can take a different value for each vertex in a primitive. The basic idea is that

the complete set of data for the attribute is copied in a single operation from a JavaScript

array into memory that is accessible to the GPU. Unfortunately, setting things up to make

that operation possible is non-trivial (see code 1.1).

2.4. Uniform and Varying

Global variable declarations in a vertex shader can be marked as attribute, uniform, or

varying. A variable declaration with none of these modifiers defines a variable that is local to

the vertex shader. Global variables in a fragment can optionally be modified with uniform or

varying, or they can be declared without a modifier. A varying variable should be declared in

both shaders, with the same name and type. This allows the GLSL compiler to determine

what attribute, uniform, and varying variables are used in a shader program. This qualifier

forms a link between a vertex shader and fragment shader for interpolated data. It can be

used with the following data types − float, vec2, vec3, vec4, mat2, mat3, mat4, or arrays. (see

code 2.1 and 2.2). The summary on attribute, uniform and varying qualifiers are listed in the

Figure 2.2.

Figure 2.2: Attribute, uniform and varying qualifiers (source:

https://www.tutorialspoint.com/webgl/webgl_quick_guide.htm)

https://www.tutorialspoint.com/webgl/webgl_quick_guide.htm

Page | 10

Code: 2.1. Sample Code for drawing a triangle using Uniform color

<!-- saved from url=(0065)http://math.hws.edu/graphicsbook/source/webgl/simple-texture.html --

> <!-- modified by Mohammad Imrul Jubair -->

<html>

<title>LAB-2: Uniform</title>

<canvas id="webglcanvas" width="500" height="500"></canvas>

<script>

 var canvas = document.getElementById("webglcanvas");

 var gl = canvas.getContext("webgl");

 var vertexShaderSource =

 `attribute vec3 a_coords;

 void main() {

 gl_Position = vec4(a_coords, 1.0);

 }`;

 var fragmentShaderSource =

 `precision mediump float;

 uniform vec3 u_color;

 void main() {

 gl_FragColor = vec4(u_color, 1.0);

 }`;

 var vsh = gl.createShader(gl.VERTEX_SHADER);

 gl.shaderSource(vsh, vertexShaderSource);

 gl.compileShader(vsh);

 var fsh = gl.createShader(gl.FRAGMENT_SHADER);

 gl.shaderSource(fsh, fragmentShaderSource);

 gl.compileShader(fsh);

 var prog = gl.createProgram();

 gl.attachShader(prog, vsh);

 gl.attachShader(prog, fsh);

 gl.linkProgram(prog);

 gl.useProgram(prog);

 var a_coords_location = gl.getAttribLocation(prog, "a_coords");

 var coords = new Float32Array([0.0, 0.0, 0.0,

 0.0, 0.5, 0.0,

Page | 11

 0.5, 0.0, 0.0]);

 var a_coords_buffer = gl.createBuffer();

 gl.bindBuffer(gl.ARRAY_BUFFER, a_coords_buffer);

 gl.bufferData(gl.ARRAY_BUFFER, coords, gl.STATIC_DRAW);

 gl.vertexAttribPointer(a_coords_location, 3, gl.FLOAT, false, 0, 0);

 gl.enableVertexAttribArray(a_coords_location);

 var u_color_location = gl.getUniformLocation(prog, "u_color");

 var color = new Float32Array([0.5, 0.7, 0.3]);

 gl.uniform3fv(u_color_location, color);

 gl.clearColor(0.75, 0.75, 0.75, 1.0);

 gl.clear(gl.COLOR_BUFFER_BIT);

 gl.drawArrays(gl.TRIANGLES, 0, 3);

</script></html>

Code: 2.2. Sample Code for drawing a triangle using varying (interpolated) color

<!-- saved from url=(0065)http://math.hws.edu/graphicsbook/source/webgl/simple-texture.html --

> <!-- modified by Mohammad Imrul Jubair -->

<html>

<title>LAB-2: Varying </title>

<canvas id="webglcanvas" width="500" height="500"></canvas>

<script>

 var canvas = document.getElementById("webglcanvas");

 var gl = canvas.getContext("webgl");

 var vertexShaderSource =

 `attribute vec3 a_coords;

 attribute vec3 a_colors;

 uniform float u_shift;

 varying vec3 v_color;

 void main() {

 gl_Position = vec4(a_coords.x + u_shift, a_coords.y, a_coords.z, 1.0);

 v_color = a_colors;

 }`;

 var fragmentShaderSource =

 `precision mediump float;

Page | 12

 varying vec3 v_color;

 void main() {

 gl_FragColor = vec4(v_color, 1.0);

 }`;

 var vsh = gl.createShader(gl.VERTEX_SHADER);

 gl.shaderSource(vsh, vertexShaderSource);

 gl.compileShader(vsh);

 var fsh = gl.createShader(gl.FRAGMENT_SHADER);

 gl.shaderSource(fsh, fragmentShaderSource);

 gl.compileShader(fsh);

 var prog = gl.createProgram();

 gl.attachShader(prog, vsh);

 gl.attachShader(prog, fsh);

 gl.linkProgram(prog);

 gl.useProgram(prog);

 var a_coords_location = gl.getAttribLocation(prog, "a_coords");

 var coords = new Float32Array([0.0, 0.0, 0.0,

 0.0, 0.5, 0.0,

 0.5, 0.0, 0.0]);

 var a_coords_buffer = gl.createBuffer();

 gl.bindBuffer(gl.ARRAY_BUFFER, a_coords_buffer);

 gl.bufferData(gl.ARRAY_BUFFER, coords, gl.STATIC_DRAW);

 gl.vertexAttribPointer(a_coords_location, 3, gl.FLOAT, false, 0, 0);

 gl.enableVertexAttribArray(a_coords_location);

 var u_shift_location = gl.getUniformLocation(prog, "u_shift");

 var shift = 0.0;

 gl.uniform1f(u_shift_location, shift);

 a_colors_location = gl.getAttribLocation(prog, "a_colors");

 var colors = new Float32Array([1.0, 0.0, 0.0,

 0.0, 1.0, 0.0,

 0.0, 0.0, 1.0]);

 a_colors_buffer = gl.createBuffer();

 gl.bindBuffer(gl.ARRAY_BUFFER, a_colors_buffer);

 gl.bufferData(gl.ARRAY_BUFFER, colors, gl.STATIC_DRAW);

 gl.vertexAttribPointer(a_colors_location, 3, gl.FLOAT, false, 0, 0);

Page | 13

 gl.enableVertexAttribArray(a_colors_location);

 gl.clearColor(0.75, 0.75, 0.75, 1.0);

 gl.clear(gl.COLOR_BUFFER_BIT);

 gl.drawArrays(gl.TRIANGLES, 0, 3);

 canvas.onmousedown = function ()

 {

 shift = shift + 0.1;

 gl.uniform1f(u_shift_location, shift);

 gl.clearColor(0.75, 0.75, 0.75, 1.0);

 gl.clear(gl.COLOR_BUFFER_BIT);

 gl.drawArrays(gl.TRIANGLES, 0, 3);

 };

</script>

</html>

Output:

2.5. Mouse Interaction:

The mousedown event is fired at an Element when a pointing device button is pressed while

the pointer is inside the element. We can utilize this to call draw functions to render on the

canvas based on clicking. The following code segment from code 2.2 is responsible for

invoking draw function for mouse click.

 canvas.onmousedown = function ()

 {

 shift = shift + 0.1;

 gl.uniform1f(u_shift_location, shift);

Page | 14

 gl.clearColor(0.75, 0.75, 0.75, 1.0);

 gl.clear(gl.COLOR_BUFFER_BIT);

 gl.drawArrays(gl.TRIANGLES, 0, 3);

 };

2.6. GLSL Control Statements and Built-in functions

2.6.1. Control Statements: GLS is a C-like language. We can use our basic concepts of

control statements (e.g. if-else, switch-case, loop, etc). A helpful resource is:

https://www.shaderific.com/glsl-statements. An example of IF-ELSE in vertex shader is

provided below.

 attribute vec3 a_coords;

 attribute vec3 a_colors;

 uniform float u_shift;

 varying vec3 v_color;

 void main() {

 if (u_shift < 0.7)

 gl_Position = vec4(a_coords.x - u_shift,

 a_coords.y,

 a_coords.z,

 1.0);

 else

 gl_Position = vec4(a_coords.x,

 a_coords.y,

 a_coords.z,

 1.0);

 v_color = a_colors; }

2.6.2. Built-in Functions: GLSL provides a significant number of built-in functions and you

should be familiar with them. Please see this page (https://www.shaderific.com/glsl-

functions) to get idea regarding some of these functions. An example of a vertex shader

code segment that uses a built-in function clamp() is provided below.

https://www.shaderific.com/glsl-statements
https://www.shaderific.com/glsl-functions
https://www.shaderific.com/glsl-functions

Page | 15

2.7. Task:

2.7.1. Task 1: Create a 2D spiral. For each click, the spiral will keep increasing. The outer

points will be bigger than the inner points depending on the distance from the center. Note

that, you have to send 2D data to the GPU from CPU. The following figure shows different

situation of the canvas after several mouse clicking (from left to right).

Hints:

• Use gl_PointSize in the vertex shader to fix the size of the point. (Example:

https://www.tutorialspoint.com/webgl/webgl_drawing_points.htm)

• Use GLSL distance() function to calculate the distance between a vertex and the center in the vertex

shader.

• To generate the vertices for a 2D spiral in CPU, you can use JavaScript’s Math library to apply the

formula, e.g. Math.cos(). Use push() function to build up an array of vertices of the spiral using a loop.

• Appy optimistically while using/ reusing vertex buffer.

2.7.2. Task 2: Create a 2D flower based on Rhodonea curve. Use GL_POINTS in your draw

call. For each click, the arrangement of the petals will keep changing. Also, the color of the

points will be alternated between green and red for each click. Note that, you have to send

2D data to the shader from CPU.

Figure: Situation of the canvas after several mouse clicking (from left to right).

Hints:

• Rose in math: https://en.wikipedia.org/wiki/Rose_(mathematics)

https://www.tutorialspoint.com/webgl/webgl_drawing_points.htm
https://en.wikipedia.org/wiki/Rose_(mathematics)

Page | 16

• You can track odd/ even clicking in the shader to alternate color.

• To generate the vertices for a 2D spiral in CPU, you can use JavaScript’s Math library to apply the

formula, e.g. Math.cos(). Use push() function to build up an array of vertices of the spiral using a loop.

• Appy optimistically while using/ reusing vertex buffer.

2.7.3. Task 3: Create a 2D scenario (model) using your creativity. The model has to be

created using 2D triangle mesh. Apply per-vertex color on your model. Integrate a

keyboard interaction having at least one GLSL control statement (and/or built-in function)

inside the shader.

Note:

• Your mesh must have at least 45 vertices in total.

• You can use gl.TRIANGLES and/or gl.TRIANGLE_STRIP and/or gl.TRIANGLE_FAN.

Page | 17

Lab 3 – Index Buffer and Transformation Matrices

3.1. Objective:

Objective of the topic is (1) to learn about index buffer and its necessity; (2) to work with

3D objects and (3) to use 3D transformation matrices.

3.2. Index Buffer:

The index buffer contains integers, three for each triangle in the mesh, which reference the

various attribute buffers (position, colour, UV coordinates, other UV coordinates, normal,

etc.). It’s a little bit like in the OBJ file format, with one huge difference: there is only ONE

index buffer. This means that for a vertex to be shared between two triangles, all attributes

must be the same.

Figure 3.1: Concept of the index buffer (source: http://www.opengl-tutorial.org/intermediate-

tutorials/tutorial-9-vbo-indexing/)

Here is an example:

Code: 3.1. Implementing index buffer

var 17coords = new Float32Array([

 -0.5, -0.5, 0.0, //v0

 0.5, -0.5, 0.0, //v1

 0.5, 0.5, 0.0, //v2

 -0.5, 0.5, 0.0 //v3

]);

var colors = new Float32Array([

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-9-vbo-indexing/
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-9-vbo-indexing/

Page | 18

 1.0, 0.0, 0.0, //color at v0

 0.0, 1.0, 0.0, //color at v1

 0.0, 0.0, 1.0, //color at v2

 1.0, 1.0, 0.0 //color at v3

]);

var indices = new Uint8Array([0, 1, 2, 0, 2, 3]);

var bufferInd = gl.createBuffer();

gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, bufferInd);

gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW);

In the above example, we defined the geometry and colors in the coords and colors arrays. We

define the indices in and store it into the buffer so that GPU can render accordingly (shown in

highlights)

3.2. 3D Transformation Matrices:

Basic transformations are: scaling, shearing, rotation, reflection and translation.

Transformation is applied through the concept of linear transformation. Which is an

operation of taking a vector and produces another vector by a simple matrix multiplication.

These matrices are called transformation matrices.

Some examples, we can use the following matrix to perform scaling in 2D.

Code: 3.2. Implementing 3D Rotation Matrix

<!-- saved from url=(0065)http://math.hws.edu/graphicsbook/source/webgl/simple-texture.html --

>

<!-- modified by Mohammad Imrul Jubair -->

<html>

<title>LAB-3: Transformation Matrix </title>

<canvas id="webglcanvas" width="500" height="500"></canvas>

<script>

 var canvas = document.getElementById("webglcanvas");

 var gl = canvas.getContext("webgl");

Page | 19

 var vertexShaderSource =

 `attribute vec3 a_coords;

 attribute vec3 a_colors;

 uniform mat4 u_RotY;

 uniform mat4 u_RotX;

 varying vec3 v_color;

 void main() {

 gl_Position = u_RotX*u_RotY*vec4(a_coords, 1.0);

 v_color = a_colors;

 }`;

 var fragmentShaderSource =

 `precision mediump float;

 varying vec3 v_color;

 void main() {

 gl_FragColor = vec4(v_color, 1.0);

 }`;

 var vsh = gl.createShader(gl.VERTEX_SHADER);

 gl.shaderSource(vsh, vertexShaderSource);

 gl.compileShader(vsh);

 var fsh = gl.createShader(gl.FRAGMENT_SHADER);

 gl.shaderSource(fsh, fragmentShaderSource);

 gl.compileShader(fsh);

 var prog = gl.createProgram();

 gl.attachShader(prog, vsh);

 gl.attachShader(prog, fsh);

 gl.linkProgram(prog);

 gl.useProgram(prog);

 var a_coords_location = gl.getAttribLocation(prog, "a_coords");

 var coords = new Float32Array([

 // Coordinates……

]);

 var a_coords_buffer = gl.createBuffer();

 gl.bindBuffer(gl.ARRAY_BUFFER, a_coords_buffer);

 gl.bufferData(gl.ARRAY_BUFFER, coords, gl.STATIC_DRAW);

 gl.vertexAttribPointer(a_coords_location, 3, gl.FLOAT, false, 0, 0);

 gl.enableVertexAttribArray(a_coords_location);

Page | 20

 var a_colors_location = gl.getAttribLocation(prog, "a_colors");

 var colors = new Float32Array([

 \\Colors……

]);

 var a_colors_buffer = gl.createBuffer();

 gl.bindBuffer(gl.ARRAY_BUFFER, a_colors_buffer);

 gl.bufferData(gl.ARRAY_BUFFER, colors, gl.STATIC_DRAW);

 gl.vertexAttribPointer(a_colors_location, 3, gl.FLOAT, false, 0, 0);

 gl.enableVertexAttribArray(a_colors_location);

 var indices = new Uint8Array([

 \\ Indices……

]);

 var bufferInd = gl.createBuffer();

 gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, bufferInd);

 gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, indices, gl.STATIC_DRAW);

 var u_rotateY_location = gl.getUniformLocation(prog, "u_RotY");

 var thetaY = 45;

 var rad = thetaY*Math.PI/180;

 var rotateYMatrix = new Float32Array([

 Math.cos(rad), 0.0, -Math.sin(rad), 0.0,

 0.0, 1.0, 0.0, 0.0,

 Math.sin(rad), 0.0, Math.cos(rad), 0.0,

 0.0, 0.0, 0.0, 1.0]);

 gl.uniformMatrix4fv(u_rotateY_location, false, rotateYMatrix);

 var u_rotateX_location = gl.getUniformLocation(prog, "u_RotX");

 var thetaX = 45;

 var rad = thetaX*Math.PI/180;

 var rotateXMatrix = new Float32Array([

 1.0, 0.0, 0.0, 0.0,

 0.0, Math.cos(rad), Math.sin(rad), 0.0,

 0.0, -Math.sin(rad), Math.cos(rad), 0.0,

 0.0, 0.0, 0.0, 1.0]);

 gl.uniformMatrix4fv(u_rotateX_location, false, rotateXMatrix);

 gl.clearColor(1.0, 1.0, 1.0, 1.0);

 gl.enable(gl.DEPTH_TEST);

 gl.enable(gl.CULL_FACE);

Page | 21

 gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

 gl.drawElements(gl.TRIANGLES, 3*12, gl.UNSIGNED_BYTE, 0);

</script>

</html>

3.7. Task:

Create 3D cube using index buffer. Provide different colors for different faces. You have to

introduce border for the object as shown in the diagrams below. For each left click, the

cube will be scaled up and for right click, it will be scaled down. For pressing right and

down arrow keys, the cube will rotate (+ve) along Y and X axis respectively.

Hints:

• To draw the border, you can call the draw functions two times. One will draw the cube with black color,

but being slightly scaled up. For the next call, the cube will be drawn with faces’ colors, but not being

scaled. This difference between scaling factors will be appeared as a border in the canvas.

• Two handle the colors for two different draw calls, you can use control statements inside shaders that

will switch between different gl_FragColor.

• Be careful while using gl.COLOR_BUFFER_BIT for second draw call. Also, z-coordinates can be ignored

for drawing the border.

Page | 22

Lab 4 – Perspective and Camera Transformation

4.1. Objective:

Objective of the topic is to apply the theoretical knowledge of viewing in WebGL

4.2. Projection Transformation Chain:

The stages of operations that need to be applied to view a vertex from perspective view

volume to the viewport work as a chain, which are listed below.

1. Modeling transform: Mm

2. Camera Transformation: Mcam

3. Perspective: P

4. Orthographic Projection: Morth

5. Viewport Transform: Mvp

This stage is applied as composite transformation which is –

We can implement this using the following vertex shader code 4.1.

Code: 4.1. Vertex shader source code with Model, View and Projection Matrix

var vertexShaderSource =

 `attribute vec3 a_coords;

 attribute vec3 a_colors;

 uniform mat4 u_RotY;

 uniform mat4 u_RotX;

 uniform mat4 u_Scale;

 uniform mat4 u_Trans;

 uniform mat4 u_Basis;

 uniform mat4 u_Eye;

 uniform mat4 u_Pers;

 varying vec3 v_color;

 void main() {

Page | 23

 mat4 M = u_Trans*u_RotX*u_RotY*u_Scale;

 mat4 V = u_Basis*u_Eye;

 mat4 P = u_Pers;

 mat4 MVP = P*V*M;

 gl_Position = MVP*vec4(a_coords, 1.0);

 v_color = a_colors;

 }`;

Here M, V and P are the modeling, view and perspective matrices respectively. Sample code

for implementing modeling matrix is already shown in the previous lab (section – 3). The

perspective and camera matrices are already covered in the theory class. However, the

code for defining these two matrices is shown below (code 4.2. and 4.3.).

Code: 4.2. Implementing Projection Matrix

var aspect = 1.0;

var fov = 75.0;

var far = 10.0;

var near = 1.0;

var pa = 1.0/(aspect*Math.tan((fov/2)*Math.PI/180));

var pb = 1.0/(Math.tan((fov/2)*Math.PI/180));

var pc = -(far+near) / (far-near);

var pd = -(2.0*far*near) / (far-near);

 var persMat = new Float32Array([pa, 0.0, 0.0, 0.0,

 0.0, pb, 0, 0.0,

 0.0, 0.0, pc, -1.0,

 0.0, 0.0, pd, 0.0]);

Here, fov, near, far and aspects are field-of-view, distance of near and far clipping plane and

aspects ratios to define the viewing frustum.

Code: 4.3. Implementing Camera Matrix

var basisMat = new Float32Array([1, 0, 0, 0,

 0, 1, 0, 0,

 0, 0, 1, 0,

 0, 0, 0, 1]);

 var xe = 0.9;

 var ye = 0.0;

Page | 24

 var ze = 0.1;

 var eyeMat = new Float32Array([1, 0, 0, 0,

 0, 1, 0, 0,

 0, 0, 1, 0,

 -xe, -ye, -ze, 1]);

Here, basisMat and eyeMat defines the basis vectors and viewpoints positions of the frame

coordinate system for the camera transformation respectively as shown the theory classes.

Figure 4.1. also shows the concept.

Figure 4.1: Camera Transformation matrix.

4.3. Task

Create a crate (box) with a lid. Both the crate and lid have the same coordinates; only lid is

the scaled (skewed) version of the crate. You have freedom to choose colors. Attach two

separate shader programs for the crate and the lid. Apply perspective projection on them.

For each left and right arrow key pressing, the crate along with the lid (crate + lid) will rotate

positive and negative degree along Y axis respectively. For each up and down arrow key

pressing, only the lid will open and close respectively. See the following figure showing

Page | 25

different states of the crate and the lid. (a) – (c): Pressing down arrow key several times. (d)

– (f): Pressing right arrow key several times. (g): Pressing left arrow key several times. (h):

Pressing up arrow key several times.

(a) (b) (c) (d)

(e) (f) (g) (h)

Requirement:

1. Initially the (crate + lid) will create 30-degree w.r.t X and Y axis respectively.

2. Your program must be modularized into several functions. There must be two initiGL functions −

which are initGL_1() and initGL_2(); and two draw functions which are draw_crate() and draw_lid()

respectively.

3. Your program must have different functions for different transformation matrices, for perspective and

for processing attribute buffers. The code skeleton contains the format of the function [see next

section].

a. Transformation function: For example, the rotate_Y(thetaY, loc) function will send a rotation

matrix along Y axis with thetaY degree to the loc location that contains the matrix in shader.

Here loc is defined inside initGL function.

b. Perspective function: The function perspective (aspect, fov, near, far, loc) will take the

necessary parameters (aspect, fov, near and far) and the location loc to be assigned.

c. Attribute buffer: For example, passAttribData(data, att_buffer, loc) will take CPU data, the

buffer att_buffer which is created inside initGL and the location loc where the data needs to be

passed.

Lab 5 – Introduction to Three.js

5.1. Objective:

The objective of the topic is to (1) get introduced to Three.js, a popular javascript library
for 3D graphics and animations (2) setting up the Three.js environment and (3) creating
3D objects and manipulating within a web page.

5.2. What is Three.js

● A javascript library
● You can create and display 3D graphics on a web browser
● Built on WebGL API
● Easy to use

Figure 5.1: Hierarchy of Graphics APIs and Libraries

5.3. Thress.js Installation

three.js can be installed with npm or can be used with static hosting or a CDN. NPM is the most
common approach. To install three.js -

● Download and install the latest version of Node.js
● Open a terminal window in your project folder and run:
● Package will be downloaded and installed
● Full download will give so many additional files
● You can only use the Three.js source

Page | 26

5.4. Basic Elements of Three.js
● Renderer

- Draws the scene
- Needs to be attached to an HTML element

● Camera
- Camera is the view port to look at the objects in a scene
- Camera controls how your object will be seen
- 2 main types of camera: Orthographic and Perspective

● Scene
- Scene is where you put your modes, such as car, house or cubes

● Geometry (Objects)
- three.js provides some predefined geometry
- You can define your own vertices
- Use an existing mode
-

Basic syntax of Three.js elements:
● Create a Renderer

new THREE.WebGLRenderer()
● Create a camera

new THREE.PerspectiveCamera(FOV, viewAspectRatio, zNear, zFar)
● Create a Scene

new THREE.Scene()
Page | 27

● Render the scene from the camera
renderer(scene, camera)

● Create a mesh with geometry and add it to the scene
const cube = new THREE.Mesh(geometry, material);
scene.add(cube);

5.5. Custom Shaders

● A shader is a small program written in GLSL
● It runs on the GPU
● Two types of shader: Vertex Shader and Fragment Shader
● Vertex shader is applied on every vertex
● Fragment shader is applied on every fragment/pixel
● In three.js ShaderMaterial allows a material to be rendered with custom shaders
● Following code demonstrates how custom vertex and fragment shader can be implemented using

three.js -

Page | 28

Page | 29

Lab 6 – Texture Mapping, Lighting and Animation

6.1. Objective:

The objective of the topic is to (1) apply the theoretical knowledge of texture mapping and
lighting in three.js and (2) implement simple animation in three.js

6.2. Texture Mapping

● We can give realistic appearance to our objects by applying texture mapping
● A texture is an image that would wrap the object
● In order to apply texture mapping, we need to load the texture
● Texture is loaded as a texture object
● Following code demonstrates how texture mapping can be implemented in three.js-

Figure 6.1: Output of a sample texture mapping

Page | 30

6.3. Lighting in Three.js

● Light globally illuminates the objects
● provides some lighting models
● Common lighting model: Ambient Light, Point Light, Directional Light
● Following syntax can be used to create three.js light -

Figure 6.2: Effect of different types of lighting models

6.4. Animation

● requestAnimationFrame() method creates a loop
● It causes the renderer to draw a new scene
● Generally refresh rate is 60FPS. The following code demonstrates how animation can be

implemented -
Page | 31

6.5. Task:

Implement a TV Room using three.js. All the models in the roommust have texture and the texture
of the TV screen will continuously change after certain intervals. Additionally, the camera must
continuously move inside the room.

Midterm Examination

There will be an examination containing algorithm problems, simulations and multiple-choice
questions.

Lab Final Examination

There might be an examination containing algorithm problems and simulations.

Project

Students will form groups and will develop project based on the contents taught in the lab sessions.

Page | 32

